R语言基础画图/绘图/作图
R语言基础画图
R语言免费且开源,其强大和自由的画图功能,深受广大学生和可视化工作人员喜爱,这篇文章对如何使用R语言作基本的图形,如直方图,点图,饼状图以及箱线图进行简单介绍。
0 结构
每种图形构成一个section,每个部分大致三部分构成,分别是R语言标准画图代码,R语言画图实例,和画图结果。
R语言标准画图代码帮助你可以直接使用:help(funciton)查找,实例数据基本都来自内置包的数据,好了,直接切入主图,从最简单的点图开始吧。
1 点图
点图,简单的讲就是每个数据点按照其对应的横纵坐标位置对应在坐标系中的图形,什么是点图就不做过多介绍了。
点图标准代码:
dotchart(x, labels = NULL, groups = NULL, gdata = NULL,
cex = par("cex"), pt.cex = cex,
pch = 21, gpch = 21, bg = par("bg"),
color = par("fg"), gcolor = par("fg"), lcolor = "gray",
xlim = range(x[is.finite(x)]),
main = NULL, xlab = NULL, ylab = NULL, ...)
x是数据来源,也就是要作图的数据;labels 是数据标签,groups分组或分类方式,gdata分组的值,cex字体大小,pch是作图线条类型,bg背景,color颜色,xlim横坐标范围,main是图形标题,xlab横坐标标签,相应的ylab是纵坐标。
-实例
eg1.1:
dotchart(mtcars$mpg,labels = row.names(mtcars),cex = .7,
main = "Gas Mileage for Car Models",
xlab = "Miles Per gallon")
mtcar是内置包中的一个数据,将mtcar中每加仑油的里程(mpg,miles per
gallon)作为要描述的对象,用点图展现出来,将行名作为点图标签,字体大小是正常大小的0.7,标题“Gas Mileage for Car
Models”,x轴标签”Miles Per gallon”。
运行结果(run 或者Ctrl + Enter快捷键)如图所示:
散点图1.1
eg1.2:
现在觉得这个图太散乱了,希望这个图能够经过排序,想要按照油缸数(cyl)进行分组并且用不同的颜显示。(注:#是R语言中的行注释,并且只有行注释,运行时系统会自动跳过#后面的内容)
x <- mtcars[order(mtcars$mpg),] #按照mpg排序
x$cyl <-factor(x$cyl) #将cyl变成因子数据结构类型
x$color[x$cyl==4] <-"red" #新建一个color变量,油缸数cyl不同,颜色不同
x$color[x$cyl==6] <-"blue"
x$color[x$cyl==8] <-"darkgreen"
dotchart(x$mpg, #数据对象
labels = row.names(x), #标签
cex = .7,#字体大小
groups = x$cyl, #按照cyl分组
gcolor = "black", #分组颜色
color = x$color, #数据点颜色
pch = 19,#点类型
main = "Gas Mileage for car modes \n grouped by cylinder", #标题
xlab = "miles per gallon") #x轴标签
run后结果如下:
散点图1.2
是不是好看多了,嘻嘻!按照油缸数不同进行了分类,并且可以看出油缸数量越多越耗油。
2 直方图
2.1 直方图
小学生都知道的条形图,怎么弄?
条形图标准代码:
barplot(height, ...)
是太简单了吗?这么粗暴,就给了一个变量。
实例
eg2.1.1
library(vcd)
counts <- table(Arthritis$Improved) #引入vcd包只是想要Arthritis中的数据
barplot(counts,main = "bar plot",xlab = "improved",ylab = "counts")
结果2.1.1:
条形图2.1.1
barplot(counts,main = " horizontal bar plot",
xlab = "frequency",
ylab = "improved",
horiz = TRUE)#horizon 值默认是FALSE,为TRUE的时候表示图形变为水平的
图形结果:
条形图2.1.2
eg2.1.3 进阶
数据来源:vcd包中的Arthritis,风湿性关节炎研究结果数据,如果没有安装vcd包,需要先安装,install.packages("vcd"),然后用library引用包vcd,
install.packages("vcd")
library(vcd)
counts <- table(Arthritis$Improved,Arthritis$Treatment)
counts
数据如下所示:
代码:
eg 2.1.3.1
barplot(counts,main = " stacked bar plot",xlab = "treated",ylab = "frequency",
col = c("red","yellow","green"), #设置颜色
legend = rownames(counts)) #设置图例
结果2.1.3.1:
2.1.3.1堆砌条形图
代码
eg2.1.3.2
结果2.1.3.2
分组条形图2.1.3.2
请注意,两幅图的区别在于2.1.3.2设置了beside = TRUE,beside默认值是FALSE,绘图结果是堆砌条形图,beside值为TRUE时,结果是分组条形图。
2.2**荆棘图**
荆棘图是对堆砌条形图的扩展,每个条形图高度都是1,因此高度就表示其比例。
- 实例
代码
library(vcd)
attach(Arthritis)
counts <- table (Treatment,Improved)
spine(counts,main = "Spinogram Example")
detach(Arthritis)
结果:
荆棘图2.2
3 直方图
直方图标准代码:
hist(x, ...)
也是简单地可以哈?
- 实例
我们使用par设置图形参数,用mfrow将四幅图放在一起。
代码
eg3.1:
par (mfrow = c(2,2)) #设置四幅图片一起显示
hist(mtcars$mpg) #基本直方图
hist(mtcars$mpg,
breaks = 12, #指定组数
col= "red", #指定颜色
xlab = "Miles per Gallon",
main = "colored histogram with 12 bins")
hist(mtcars$mpg,
freq = FALSE, #表示不按照频数绘图
breaks = 12,
col = "red",
xlab = "Miles per Gallon",
main = "Histogram,rug plot,density curve")
rug(jitter(mtcars$mpg)) #添加轴须图
lines(density(mtcars$mpg),col= "blue",lwd=2) #添加密度曲线
x <-mtcars$mpg
h <-hist(x,breaks = 12,
col = "red",
xlab = "Miles per Gallon",
main = "Histogram with normal and box")
xfit <- seq(min(x),max(x),length=40)
yfit <-dnorm(xfit,mean = mean(x),sd=sd(x))
yfit <- yfit *diff(h$mids[1:2])*length(x)
lines(xfit,yfit,col="blue",lwd=2) #添加正太分布密度曲线
box() #添加方框
结果:
直方图3.1
4 饼图
标准饼图代码:
pie(x, labels = names(x), edges = 200, radius = 0.8,
clockwise = FALSE, init.angle = if(clockwise) 90 else 0,
density = NULL, angle = 45, col = NULL, border = NULL,
lty = NULL, main = NULL, ...)
实例
eg4.1
par(mfrow = c(2,2))
slices <- c(10,12,4,16,8) #数据
lbls <- c("US","UK","Australis","Germany","France") #标签数据
pie(slices,lbls) #基本饼图
pct <- round(slices/sum(slices)*100) #数据比例
lbls2 <- paste(lbls," ",pct ,"%",sep = "")
pie(slices,labels = lbls2,col = rainbow(length(lbls2)), #rainbow是一个彩虹色调色板
main = "Pie Chart with Percentages")
library(plotrix)
pie3D(slices,labels=lbls,explode=0.1,main="3D pie chart") #三维饼图
mytable <- table (state.region)
lbls3 <- paste(names(mytable),"\n",mytable,sep = "")
pie(mytable,labels = lbls3,
main = "pie chart from a table \n (with sample sizes")
结果:
4.1 饼状图
5 箱线图5.1 箱线图
标准箱线图代码:
boxplot(x, ...)
实例
eg5.1boxplot(mtcars$mpg,main="Box plot",ylab ="Miles per Gallon") #标准箱线图
boxplot(mpg ~ cyl,data= mtcars,
main="car milesge data",
xlab= "Number of cylinders",
ylab= "Miles per Gallon")
boxplot(mpg ~ cyl,data= mtcars,
notch=TRUE, #含有凹槽的箱线图
varwidth = TRUE, #宽度和样本大小成正比
col= "red",
main="car milesge data",
xlab= "Number of cylinders",
ylab= "Miles per Gallon")
mtcars$cyl.f<- factor(mtcars$cyl, #转换成因子结构
levels= c(4,6,8),
labels = c("4","6","8"))
mtcars$am.f <- factor(mtcars$am,levels = c(0,1),
labels = c("auto","standard"))
boxplot(mpg~ am.f*cyl.f, #分组的箱线图
data = mtcars,
varwidth=TRUE,
col= c("gold","darkgreen"),
main= "MPG Distribution by Auto Type",
xlab="Auto Type",
ylxb="Miles per Gallon")
结果:
5.1 箱线图
小提琴图是箱线图和密度图的结合。使用vioplot包中的vioplot函数进行绘图。
小提琴图标准代码:
vioplot( x, ..., range=1.5, h, ylim, names, horizontal=FALSE,
col="magenta", border="black", lty=1, lwd=1, rectCol="black",
colMed="white", pchMed=19, at, add=FALSE, wex=1,
drawRect=TRUE)
实例
代码:
eg5.2
library(vioplot)
x1 <- mtcars$mpg[mtcars$cyl==4]
x2 <- mtcars$mpg[mtcars$cyl==6]
x3 <- mtcars$mpg[mtcars$cyl==8]
vioplot(x1,x2,x3,names= c("4 cyl","6 cyl","8 cyl"),col = "gold")
title(main="Violin plots of Miles Per Gallon",xlab = "number of cylinders",ylab = "Miles per gallon")
结果:
5.2 小提琴图
白点是中位数,中间细线表示须,粗线对应上下四分位点,外部形状是其分布核密度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29