
1.Self-training algorithm(自训练算法)
这个是最早提出的一种研究半监督学习的算法,也是一种最简单的半监督学习算法.
2.Multi-view algorithm(多视角算法)
一般多用于可以进行自然特征分裂的数据集中.考虑特殊情况(每个数据点表征两个特征):每一个数据点看成是两个特征的集合,然后利用协同训练(Co-training algorithm)进行处理.协同训练(co-training)算法,此类算法隐含地利用了聚类假设或流形假设,它们使用两个或多个学习器,在学习过程中,这些学习器挑选若干个置信度高的未标记示例进行相互标记,从而使得模型得以更新。
Balcan and Blum (2006) show that co-training can be quite effective, that in the extreme case only one labeled point is needed to learn the classifier. Zhou et al. (2007) give a co-training algorithm using Canonical Correlation Analysis which also need only one labeled point. Dasgupta et al. (Dasgupta et al., 2001) provide a PAC-style th-eoretical analysis.
3.Generative Models(生成模型)
以生成式模型为分类器,将未标记示例属于每个类别的概率视为一组缺失参数,然后采用EM算法来进行标记估计和模型参数估计,此类算法可以看成是在少量有标记示例周围进行聚类,是早期直接采用聚类假设的做法。EM算法的贪心本质使其容易陷入局部极值,因此算法对初始值的选择具有很强的依赖性.常用的解决方法是采用多组初值进行重复运算,并从中选择最好的一组解,或者通过复杂的优化算法(如分裂合并EM算法)获取参数的优化解.这些做法尽管降低了对初始值选择的敏感性,但却引入了过多的运算负担。
具体算法这里不说,我这里只说一下生成模型(Generative Models)和判别模型(Discriminative Models)的区别.
对于分类和聚类问题而言.①判别模型只关心类的决定边界在哪里;生成模型关心的是类本身而非决定边界.②判别模型只能判定数据点属于哪个类别,无法将过程描述出来;生成模型可以将过程描述.③生成模型可以得到判别模型;判别模型推不出生成模型.④判别模型估计的是条件概率分布(Conditional distribution);生成模型估计的是联合概率分布(Joint probability distribution).
常见的判别模型有:Linear discriminate analysis, Support vector machines, Boosting, Conditional random fields, Logistic regression.
常见的生成模型有:Gaussian distribution, Gaussian mixture model, Multinomial distribution, Hidden Markov model, Na?ve Bayes, Latent Dirichlet allocation.
强调一点,根据Vapnik的Statistical Learning Theory中提出统计学习中考虑两种不同类型的推理:归纳推理(Inductive inference)和转导推理(Transductive inference).转导推理的目的是估计某一未知预测函数在给定兴趣点上的值(而不是在该函数的全部定义域上的值).关键是,通过求解要求较低的问题,可以得到更精确的解.
传统的推理方法是归纳-演绎方法,人们首先根据用已有的信息定义一个一般规则,然后用这个规则来推断所需要的答案.也就是说,首先从特殊到一般,然后从一般到特殊.但是在转导模式中,我们进行直接的从特殊到特殊的推理,避免了推理中的不适定部分.
5.Graph-Based Algorithms(基于图的算法)
是基于图正则化框架的半监督学习算法,此类算法直接或间接地利用了流形假设,它们通常先根据训练例及某种相似度度量建立一个图,图中结点对应了(有标记或未标记)示例,边为示例间的相似度,然后,定义所需优化的目标函数并使用决策函数在图上的光滑性作为正则化项来求取最优模型参数
Which method should I choose ?
This may be difficult in reality. Nonetheless we can try the following checklist: Do the classes producewell clustered data? If yes, EM with generative mixture models may be a good choice; Do the features naturally split into two sets? If yes, co-training may be appropriate; Is it true that two points with similar features tend to be in the same class? If yes, graph-based methods can be used; Already using SVM? Transductive SVM is a natural extension; Is the existing supervised classifier complicated and hard to modify? Self-training is a practical wrapper method.
Where can I learn more?
A: An existing survey can be found in (Seeger, 2001).
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03