主要内容如下图所示:
首先介绍一下径向基函数网络的Hypothesis和网络的结构,然后介绍径向基神经网络学习算法,以及利用K-means进行的学习,最后通过一个实例加深对RBF神经网络认识和理解。
RBF神经网络的Hypothesis和网络结构
我们从基于Gaussian kernel的support vector machine中在无限维度中进行特征转换来获取一个large margin的边界,这个Gaussian kernel就是一个Radio Basis Function Kernel。其意义呢有两个:一是radio,代表的是x和中心点xm之间的距离,可以是任意衡量距离的某种范数,比如L2范数等;二是Basis,表示要进行联合(combine);于是就可以得到了以下关于RBF神经网络的更加质朴的定义:如下图所示,RBF神经网络实际上就是一些选择出来的radial径向hypothesis的线性组合。
那么为何是神经网络呢?我们看如下图所示的结构对比,从中可以看出两者的隐含层(hidden layer)不同,即RBF神经网络采用的激发函数或者映射是径向基函数(距离+高斯)等,而输出层都一样,是特征转换后的线性融合。
这样就得到了RBF的神经网络的Hypothesis,如下图所示,如果还记得kernel svm的hypothesis的话(representation theory),我们得到的SVM的Hypothesis实际上就是support vector的线性组合,即影响我们最后得到的hypothesis只是与这些“代表”的点有关。类似的,RBF也是如此,我们需要找到一些能够代表数据的中心点( center )。所以我们在进行训练学习的时候要做的就是:给定的径向基函数(RBF)和输出,然后决定这些center和线性组合的系数β。另外一个值得提出的就是从另一个角度来看径向基函数神经网络与其他前馈神经网络的关系,可以参考我的另一篇博文中的总结:神经网络总结(初稿),关键点就是从BP神经网络到径向基函数神经网络,一个明显的特征就是我们不用在对所有全局的链接权重进行训练,而是只对一些重要的影响输出的权重进行调整,这样就能明显提升神经网络的训练速度。
另一个重要的内容就是Gaussian的径向基函数实际上做的就是一种相似度的测量,而且是在原始空间的相似度测量。而特征转换就是距离与中心点的相似度的转换。
Full RBF神经网络
full RBF神经网络实际上就是一个非常lazy的RBF神经网络。之所以lazy讲的它根本不做center,也就是它把所有观测到的数据都作为center,也就是输入size为N,那么center的size也是N。即一种uniform的形式,融合每一个输入数据到所有训练样本点的相似度。如下图所示:
最近邻模型(Nearest neighbor)
思想就是我们对所有经过hypothesis得到的输出进行投票(vote,aggregation),而是选择在相似度上与已知样本点最近的那个点的标签作为输出。这就是典型的最近邻模型。所以这样看上去训练就比较简单了,实际上只用把观测到的数据保存下来就好,但测试过程则比较复杂,因为要对所有的已知标签的样本点进行相似度的计算,然后选出最近邻的那个,并输出该样本的标签。稍微拓展一下,我们还是可以做融合的,我们选出最相似的k个邻居,然后由着k个邻居进行投票,或者线性融合,然后再输出,这样的模型就叫做k最近邻模型。
Regularization
那如果利用full RBF神经网络进行regression呢情况又变成怎样呢,如下图所示:
从中可以看出,经过以上设计进行训练我们将得到Ein=0,这在内插法逼近函数的时候是非常好的,可是我们知道这样好的Ein往往有可能出现overfitting,所以需要进行regularization的设计。常见的方法就是加约束项或惩罚函数。在不同的空间做regularization有着不同的结果。另一中regularization的方法就是限制center的数量,我们用few center进行,而不是full,这样就能在一定程度上降低模型复杂度。那么如何从一堆X中萃取中心点呢?萃取的标准又是什么呢?
于是问题就转向了聚类问题cluster problem。
聚类问题cluster problem(K-means)
聚类问题的数学描述如下图所示,通过优化聚类误差(采用了平方误差)进行。
于是就引出了非常著名的K-means聚类算法,具体内容参看我的另一篇博客K-means算法
把K-means 应用到RBF神经网络中
那么将K-means方法用到RBF神经网络中,就可以得到以下的流程
下面几个就是利用k-means算法流程进行的实验结果
对比了采用regularization的full RBF、采用了few center(K-means)的RBF以及基于nearest neighbor的Full RBF实验效果图,从图中可以看出,虽然full RBF效果可能要比k-means的效果要好,可是一般来讲由于计算复杂度和overfitting的风险等原因一般不常常使用。
*************************************************************************************************************************************
对于径向基函数神经网络,只要抓住它的hypothesis的质朴表示:一堆center的相似度(Gaussian RBF)的线性融合(vote,linear aggregation)就好了。完成的特征转换就是距离到相似度。输出就是相似度的线性组合。
然后中间涉及到的三个比较重要的内容就是:1. 最近邻思想;2. K-means算法;3. alternating optimization的思想。能够掌握上面三个重要内容就非常好了。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21