一、主要内容
topic 1 深度神经网络结构
从类神经网络结构中我们已经发现了神经网络中的每一层实际上都是对前一层进行的特征转换,也就是特征抽取。一般的隐藏层(hidden layer)较少的类神经网络结构我们称之为shallow,而当隐藏层数比较多的类神经网络结构我们称之为deep。如下图所示:
从两者的对比中可以明显发现,随着类神经网络结构的层数逐渐变多,由shallow转向deep,训练的效率会下降,结构变得复杂,那么对应的能力(powerful)呢?实际上shallow的类神经网络已经很强的powerful了,那么多增加layer的目的到底是什么呢?是如何的更加富有意义(meaningful)呢?且往下看:
图中所示的一个非常常见的问题:识别手写体数字的模式识别问题。最原始的特征就是我们的原始数字化的图像(raw features:pixels),从pixels出发,通过第一层的转换我们可以得到一些稍微复杂一点点的features:笔画特征,然后我们再由这些笔画特征开始输入到下一层中,就可以得到更加抽象的认识特征(将像素组合成笔画,然后再由笔画的组成去构成对数字的认识,进而识别数字)。上图中可以看出,数字1可以由第一层的左边三个笔画构成,而数字5可以由第一层右边四个笔画构成,从第一层到第二层,链接权重红色表示抑制,蓝色表示激励,其实就是模仿人类神经元的工作机制(最简单的模仿:激励和抑制)。那么这个手写体数字的模式识别问题就可以通过这一层一层的类神经网络结构得到解决。但是问题是,类神经网络的结构如何确定,模型复杂度如何评估(会不会overfitting呢),以及优化的方式和计算复杂度的评估呢?且看下图总结:
对于第一个问题,如何确定类神经网络的结构,可以通过domain knowledge来解决,比如在图像处理中应用的卷积神经网络,就是利用了像素在空间上的关系。
对于第二个问题,我们知道一个非常经典的关系,overfitting与模型复杂度、数据量、噪声的关系:模型复杂度越大,数据量越小,噪声越大,就越容易发生overfitting,反之亦然。所以,如果我们训练时候的数据量足够大,就完全可以消弭由于模型复杂度带来的overfitting的风险。所以,对于模型复杂度,要保证足够大的数据量。当然,另外一种我们最熟悉的用来抑制模型复杂度的工具就是regularization,通过对噪声的容忍(noise-tolerant)对象不同可以有两种regularization的方式:对网络节点退化可以容忍的dropout以及对输入数据退化可以容忍的denoising,都表现在对噪声的抑制。所以,第二个问题可以通过在数据量上的保证和对噪声的抑制来解决。
对于第三个问题,deep learning的layer越多,权重也就越多,在进行优化的时候就更加容易出现局部最优,因为变量多了,想象一下,似乎连绵起伏的山一样,局部最优的情况也就更加容易发生。那么如果克服发生局部最优的优化问题呢?可以通过一个叫做pre-training的方法,慎重的对权重进行初始化,使得权重一开始就出现在全局最优的那个“山峰”上,然后通过梯度下降或者随机梯度的方式往下滚,直到全局最优。所以,这个pre-training就可以克服局部最优的问题,后面也将是我们讲解的一个重点。
对于第四个问题,计算的复杂度是与deep learning的结构复杂度正相关的,但是不用担心,一个强有力的硬件支持或者架构支持已经被用来进行深度神经网络的训练和计算,那就是GPU或FPGA这种可以进行大量的硬件上的并行计算的处理器。所以第四个问题只要通过选择专用的硬件平台就可以解决。
那么四个问题都加以了分析和解决,我们下面的重点在于pre-training的机制,如何获得较好的网络初始值呢?
上图就是典型的深度神经网络的训练过程,先通过pre-training进行网络参数的初始设置,然后再通过第二步利用误差回传机制对网络参数进行调优(fine-tune)。
那么这个pre-training的具体是如何进行的呢?实际上就是如上图所示,每次只进行两层之间的参数训练,确定之后再往其紧接着的上面两层参数进行训练,就这样逐层的训练。那么训练的机制呢?就是今天的第二个topic,autoencoder,自动编码器。
topic 2 自动编码器
那么我们看,自动编码器是如何实现的。在这之前,先说明一个概念:information preserving,就是信息保持,我们在层与层之间的进行的特征转换实际上就是一个编码的过程,那么一个好的编码就是能够做到information preserving。所以一个好的特征转换就是转换后的特征能够最大限度地保留原始信息,而不至于使得信息变得面目全非。转换后的特征是raw features的一个好的representation。且看下图:
我们还以原来的手写体数字的识别为例,将原始特征(raw features,pixels)转换为笔画特征是一个好的特征转换吗?能够保持原始信息吗?那么如何衡量这个信息是不是丢失了呢?自然而然就想到了,我把数字1的转化成了笔画,那么这些笔画能不能重新组合表示为数字1呢?根据上面的介绍,我们可以做到从1到笔画,然后还可以从笔画再到1的过程。这就是很好的信息保持(information preserving)。那么根据这种由输入通过一层hidden layer,然后再转变为输入的机制去评估信息保持的效果,去衡量特征转化的品质。那么就得到以下的一个训练机制,且看下图:
这就是我们要将的pre-training的机制。由输入经编码权重得到原始数据的特征转换,然后再由特征转换经解码权重得到原始数据的机制。整个映射实际上就是一个identity function,因为输出=输入嘛!
那么实际上我们设计的这个训练过程能够应用到监督学习和非监督学习。对于监督学习,我们可以用来学习数据的informative representation,hidden layer的输出就是。对于非监督学习,我们可以用来进行密度估计(density estimation):当g(x)≈x时的x处的密度更大;还可以用来进行outlier检测:那些g(x)与x相差远的x就可以作为outlier。那些g(x)≈x的隐藏层输出,能够作为x的典型表示(typical representation)。
因此,一个基本的autoencoder的完整流程就有了,且看下图:
因为上面解释的就比较多了,下面就不再对这个流程进行详细说明。一个需要点出的就是使得编码权重Wij与解码权重Wji相等可以用来作为一种形式的regularization。而整个训练一层一层的进行实际上就是一个只有两层的类神经网络,进行误差回传和梯度下降计算的复杂度都不会很大。
有了pre-training,于是乎我们的deep learning的过程就变成了下图:
上面讲完了通过pre-training得到较好的初始权重,以便于整个deep learning能够在开始训练的时候就站在一个非常好的位置,即在一定程度上避免由于模型结构复杂度导致的overfitting发生的风险。由此引出的autoencoder。
那么前面讲为了克服overfitting的风险,还可以从另一个角度:noise的角度出发。下面我们就进行denoising autoencoder的相关内容。
topic 3 去噪自动编码器
在类神经网络中其实已经介绍过一些用于regularization的方法,比如通过限制模型输出的精度、权重的消减或者提前终止训练等,那么下面介绍的是一种比较另类的regularization的方法。
上面说了,基于消除噪声的方式,一般直接的想法或者常用的是data cleaning/pruning,那么我们这里介绍的也不是这种常规的方法,而是一种反向思维的方式:如果我直接往输入数据中加入人工的噪声呢?会发生什么样的情况。这就是我们下面要探讨的去噪自动编码器。
这种往input中添加噪声的思维是以robustness健壮性出发的,试想如果我加完噪声后的数据作为输入,经过编码和解码后,如果输出依然等于加入噪声前的数据,这样的类神经网络结构是不是非常的稳健,也就说抗干扰能力很强。基于此想法,我们就得到denoising autoencoder的方法,且看下图
所以输入时x+人工噪声,标签是x,这样来对网络进行训练,这样的神经网络结构自然就具备了denosing的效果。
topic 4 线性自动编码器与主成分分析
所以前面讲的都是直接基于非线性映射的结构,而一般上我们常常是先通过线性的解释,然后再拓展至非线性。那么我们看看线性自动编码器是怎样的,看下图:
我们依然通过平方误差进行推导,推导过程见下图,总之就是一堆矩阵的运算,如果学过矩阵分析课程看起来并不复杂,实际上就是进行谱分解,看不懂也没关系,只要知道处理过程就好,求输入矩阵的最大特征值和其对应的特征向量,实际上这也是PCA处理的过程(PCA基于matlab的代码链接,小弟资源分不够,求个资源分勿怪)。
那么实际上,linear 的autoencoder实际上与主成分分析是非常相近的,只不过主成分分析具有统计学的说明。进行特征转换后的方差要大。我们把数据进行零均值化作为autoencoder的输入,结果就跟PCA一样了。具体的关系可以看下图说明:
*************************************************************************************************************************************
通过以上的介绍,相信对整个deep learning的架构有了一定认识,当然这里面介绍的大部分都是入门级的知识,不过有了一个guideline之后,再去对更加细节的设计方法进行学习时就能有更加宏观方向的把握。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20