企业大数据应用的拓展之路
大数据的应用模式
企业日常经营中,与数据相关的工作可划分为3个层次,分别是:数据、产品、商业。与之相对应,对大数据的应用模式分别为数据分析、数据模型、数据业务。
1.数据层面。主要围绕数据本身开展“数据分析”的工作,对各类数据的统计分析是主要形式。企业日常经营活动中会产生各种各样的数据,通过使用数据库软件、编写脚本和程序、利用各种数据挖掘软件可以从数据中得到各种基本统计信息,例如业务量、客户增长率、财务指标情况、风险指标变化,等等。“数据分析”工作具有明确的目标指向性,工作过程相对明确,工作效果易显现。
2.产品层面。当数据和产品之间建立起紧密的联系,基于数据而研发的大量“数据模型”就成为各类产品的重要组成部分,从“数据模型”中发现的规律成为产品运营和优化的重要依据。例如,在面向C端用户的产品中,可以通过分析用户的历史行为特征数据形成用户画像模型,据此提供个性化推荐功能,还可以通过分析海量用户在使用产品时过程路径的特点形成用户操作模型,据此优化产品的业务流程设计;在面向B端用户的产品中,可以通过分析其历史经营数据、进行同业数据横向比较等多种方式,形成经营特征模型,提供丰富的经营决策支持功能。“数据模型”正日益成为各类产品不可或缺的一部分,借助“数据模型”,数据对产品在功能设计、运营全流程的支持作用日益凸显。
3.商业层面。数据不再是其它工作的辅助、不再是配角,以数据价值挖掘和利用为核心的“数据业务”成为业务发展的重要支撑。“数据业务”能为业务发展开拓新的方向,是业务转型和创新发展的重要抓手。虽然这3个层次的工作没有必然的先后顺序,但一般的企业都从“数据分析”入手,逐步向“数据模型”演进,并期待开启“数据业务”。“数据分析”中积累的经验能为“数据模型”的研发提供很好的基础,“数据模型”中获得的认知与洞察是“数据业务”顺利开展的重要逻辑支撑。不同层面的数据工作各有其用武之地,都能体现各自的价值,为特定工作带来帮助。
推动大数据应用的关键举措
为能够顺利推动大数据应用成功,当前需要从机制保障、技术支撑、数据治理、应用设计、合作联动等方面发力。
1.机制保障。对很多企业来说,当前正处于大数据应用发展的战略机遇期。需要企业在从组织、财力和人力等方面给予大数据工作相应的保障,对大数据项目采取相对灵活的财务预算及收益计算政策,通过引进高水平人才、进行系统化培训、激励政策倾斜等措施,打造出高水平、多层次的数据人才队伍,等等。
2.技术支撑。要想大数据应用取得成功,建立以统一的大数据平台为核心的技术支撑体系必不可少。大数据平台应具备海量的数据存储能力、快速的分析挖掘能力、高效的数据访问能力以及丰富的可视化展现能力等基础能力,形成面向数据内容、服务、产品的立体架构,满足企业内外部各类数据服务需求。在大数据平台的建设过程中,应注意做好传统技术与新兴技术的适当运用、大数据平台与其它应用系统的高效互通、统一处理与分散应用的合理布局、长远规划与眼前需求的综合考量等工作。
3.数据治理。完善的数据治理可以确保数据的可用性、完整性及一致性,是大数据平台良性运转、数据得到合理管理、数据价值得以充分利用的必要条件。数据治理是企业大数据战略实施的重要基础,只有在企业内部建立一套行之有效的数据治理体系,企业才会真正进入商业智能的大数据时代。数据治理是一项长期、艰苦的重要工作,需要得到从上到下的高度重视和自始至终的一贯执行,才能确保企业大数据战略的长期有效执行。
4.应用设计。大数据的价值最终需要通过大数据的各类应用模式来体现。在“数据分析”层面,应充分挖掘大数据对智能运营、精准营销、客户服务、风险管控等各方面工作的支撑作用,提高工作效率,优化工作模式。在“数据模型”层面,一方面,需要为各类产品设计丰富的大数据元素,提供相应的数据支持,丰富产品功能,优化用户体验,增强用户粘性;另一方面,也需要在各类产品设计中贯彻大数据思维,将收集各类数据、获取用户授权、记录行为模式、产品自身评估和优化等工作渗透到产品设计、研发和运营的各个环节,为大数据长期发展提供坚实的数据基础。在“数据业务”层面,需要充分利用好内外部各类数据,规划、设计和研发以大数据服务为核心的创新产品,丰富产品体系,形成新的业务收入来源。
5.合作联动。企业的大数据应用想要取得更大的成功,良好的外部合作与联动也是重要的途径。在数据内容的丰富、数据处理技术和价值挖掘的经验借鉴、数据应用的推广、数据工作影响力的拓展等诸多方面,合适的外部合作伙伴往往能提供很好的帮助,起到事半功倍的效果。除此之外,企业在大数据应用开拓方面,选择专业的数据服务商也至关重要。中科点击作为行业大数据应用专家,凭借多年大数据应用实战经验,形成了一套标准化的产品开发模式,已经为汽车、金融、教育、电商、医美等众多行业提供了定制化的大数据服务。
当前,我们正在进入一个崭新的大数据时代。各界正逐渐达成这样的普遍共识:数据是企业的重要战略资源,大数据应用能力将会成为企业成长和竞争的关键。对企业来说,选择正确的大数据发展道路,是大数据战略得以落实的首要条件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28