大数据好就业吗?当大数据遇上找工作怎么办
这是一个“大数据”的时代,是人力资源信息“大爆炸”的时代,也是人力资源管理大变革的时代。科多大数据就业老师指出,在大环境的变化下,企业人力资源管理的思维也要发生变革。
长期以来,企业多数招聘、人员晋升和激励都是基于主管感觉、个人经验和企业价值观体系。随着人力资源管理的成熟,多数企业人力资源管理已从单凭经验的模式逐步向依靠事实数据的模式转型。数据对于企业的HR来讲并不陌生,从最开始通过招聘搜集员工信息,到能力测评,以及年度、季度的绩效考评,日积月累的数据不可谓不大,但是真正将这些数据整理分析,提供给人才管理者做决策的企业却并不多见。这时,新的问题又出现了,我们如何充分利用这些数据以便更有效地支持人力资源管理工作?
大数据时代到来,给人力资源管理带来了海量数据,比如人力成本数据、劳动薪酬数据、绩效管理数据,员工需求分析等。在人力资源管理中,搭建大数据信息化平台,让管理者从繁杂数据中走出来,借助信息化平台快速精准地处理这些数据,像学力银行平台,就是帮助人力资源管理者把关键数据提炼出来,进行定量分析,提升管理效率与水平,使得HR管理更加科学化。
与统计学家在过去所做不同,只做抽样分析或样本数据处理,如今,数据已不是过去少量数据了。大数据时代不同,标志着社会处理信息方式变化,大数据时代可能会改变人们思考世界的方式。例如过去做招聘,是通过招聘会、51job、智联等渠道进行,现在招聘观念也在逐渐转变,更多地利用微信、微博、QQ群社交工具进行招聘,最有效地模式还是借助学力银行平台,不仅仅是查阅求职者的简历,还可以对求职者进行综合专业测评、查阅学力报告,了解求职者的性格、发展目标、学习能力、职业背景,更加精准地找到适合本企业的人才。
“大数据”的出现颠覆了人类的思维惯性,“大数据”模式的关注重点是“是什么”而不是“为什么”,它强调的是相关性,而我们一直关注的因果关系,在这里被放到了次要位置。我们在海量数据中寻找的是结果与变量之间的相关关系,如:具备哪些特点的人适合管理工作?而不是为什么这些人适合管理工作,这些特点也不再局限于性格类型,为人处世等我们经常在考核访谈中谈到的特征,大数据的存在使我们能够对其网络言论,论坛分享,兴趣爱好等特征进行统计分析。所以,“大数据”时代下的人力资源工作者不仅需要拨云见日的信息甄别能力,还需要具备对人力资源管理工作的高敏感性以及创新能力。
“大数据”技术目前还并没有深入的走进人力资源领域,由于其较高的技术设备要求以及我国企业管理工作的特点的原因,可能这项技术大规模应用到我国人力资源领域还需要很长的时间,但这项技术变革的规模目前已愈演愈烈,已逐步在各行业中扩散,作为人力资源工作者的我们也很有必要提前进行知识储备,认识它,了解它,玩好它,这样,在变革蔓延到人力资源领域时,我们才能从容面对,走在行业的前沿,占领战略制高点。
数据分析咨询请扫描二维码
数据分析工具推荐 数据分析工具的选择至关重要。不同工具适用于不同的需求和场景。以下是一些推荐的数据分析工具,根据您的需求 ...
2024-11-27选择适合您需求的数据分析工具 数据分析作为商业决策过程中的关键环节,工具的选择至关重要。不同的工具适用于不同的场景和需求 ...
2024-11-27数据架构文档的编写涉及多个方面,包括内容结构、编写原则和具体要求。遵循规范可以帮助团队更好地理解和管理数据架构,支持项目 ...
2024-11-27挑战与解决方案概述 在数字化时代,数据开放共享对于推动创新和发展至关重要。然而,这一进程面临诸多挑战。保护用户隐私、确保 ...
2024-11-27促进科学研究和创新 数据开放共享为研究人员提供更广泛的资源和合作机会,加速科学知识的发展。通过访问他人的数据集,验证研究 ...
2024-11-27数据组织与存储策略 数据模型是数据仓库和商业智能系统的核心,通过合理的数据组织和存储策略,确保高效、低成本、高质量地利用 ...
2024-11-27持续关注数据系统运行状态 - 数据设计与开发完成后,维护与优化工作成为至关重要的环节。这个过程需要持续且细致的关注,以确保 ...
2024-11-27数据服务未来的趋势 智能化和自动化: 随着人工智能和机器学习技术的飞速发展,数据服务领域正逐渐朝着更智能化和自动化的方向 ...
2024-11-27未来最有前景的行业主要集中在以下几个领域: 人工智能与机器学习:人工智能被认为是未来最具潜力的行业之一,其应用范围广泛 ...
2024-11-27根据多条证据,目前多个行业展现出良好的发展前景。以下是一些被认为具有最好发展前景的行业: 人工智能与机器学习:人工智能 ...
2024-11-27学习数据分析后,可以在多种类型的单位找到工作机会。这些单位包括但不限于: 政府机关:数据分析师在政府机构中扮演重要角色 ...
2024-11-27必备的职业技能 统计学基础 - 理解概率、假设检验、回归分析等统计概念。 - 运用统计方法对数据进行分析和解读。 编程能力 - 掌 ...
2024-11-27基础课程 - 统计学基础: 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识。这有助于分析师更好地理解数据背后 ...
2024-11-27数据分析领域涉及众多工具软件,涵盖了从数据处理、分析到可视化的各个方面。在选择适合自己需求的工具时,需要考虑数据规模、分 ...
2024-11-27在数据分析领域,选择合适的工具至关重要。不同的软件适用于不同的需求和技能水平。以下是几款值得考虑的数据分析软件: - Table ...
2024-11-27数据分析中常用的Excel与Python函数公式涵盖了广泛的应用场景。掌握这些基础和高级技巧对于成为一名优秀的数据分析师至关重要。 ...
2024-11-27Python是一种高级编程语言,由荷兰程序员Guido van Rossum于1989年圣诞节期间开始开发,并于1991年首次发布。Python的设计哲学强 ...
2024-11-27课程内容 数学基础: 高等数学、线性代数、概率论与数理统计、微积分等为算法设计和数据分析打下基础。 编程与算法: 掌握 ...
2024-11-27爬虫工程师是互联网时代中至关重要的职业之一,他们的工作内容主要涉及编写和维护网络爬虫程序,进行数据采集与清洗,设计系统架 ...
2024-11-27技能需求 数据管理与建模 - 掌握SQL、HiveQL、Spark SQL等数据库语言,进行复杂数据查询和分析。 - 使用数据建模工具如ER/Studio ...
2024-11-27