关于大数据审计环境下审计风险的一些思考
随着信息化技术的高速发展,特别是大数据时代的来临,计算机技术在社会生活各个领域的广泛应用,并深刻影响着审计环境、审计方式、审计技术等诸多方面。如何在保证大数据环境下充分运用信息化技术提高审计水平、质量和效率的同时防范审计风险是审计人员面临的一个重要挑战。本文将对大数据环境下的审计风险做一些简要探索,并提出相应的防控对策。
一、大数据环境下审计风险类型
在大数据环境下,审计风险一般可以分为数据自身风险和审计过程风险两大类,为了确保审计工作质量,提高审计工作水平,审计人员必须采取有效的方法控制或降低审计风险。
(一)数据自身风险
1.数据系统内控有效性。数据是大数据审计的基础和“原料”。在信息系统普遍应用的今天,数据的产生绝大部分来自于相应的信息系统,信息系统内部控制体系不能及时预防或检测出存在的重大错误,内部控制系统缺失是大数据审计所面临的最大风险。
2.数据造假及数据舞弊。在大数据审计环境下,审计人员并不直接参与被审计单位的经济活动,而是以被审计单位提供的财务资料及相关业务数据进行审计,审计的质量完全依赖于所提供信息的真实性和可靠性。一些被审计单位蓄意篡改数据、编制虚假业务流程数据,导致审计人员产生错误的判断,做出偏离事实的审计结论,形成审计风险。
3.数据的规范化水平。在大数据审计环境下,数据的规范性水平直接决定了审计效率。审计面对的行业类型多,相关信息系统数量多、业务流程复杂、数据类型繁杂,数据的结构化水平参差不齐,部分数据存在于手工纸质统计,无法有效转化为电子格式等问题都极大地降低了审计效率。数据的结构化、规范化水平是现阶段大数据审计不能回避的风险。
(二)审计过程风险
1.数据采集与转换。被审计单位纷繁复杂的信息系统产生的业务及财务数据要想成为对审计人员有用的数据,离不开数据的采集和转换。数据的采集转换是大数据审计的主要纽带,是大数据环境下审计成败的关键。当前,审计人员在进行现场数据的采集与转换过程中,普遍存在的问题包括:被审计单位的信息系统与采集模板不匹配,数据采集模板缺乏有效的共享平台,数据采集转换的时间无法准确估计等三个方面,这是大数据审计环境不容忽视的审计风险。
2.数据关联分析。数据采集完成后,审计人员对已采集的数据进行梳理、汇总分析,不同信息系统之间的数据关联性差,这个问题在不同单位、不同行业的信息系统中普遍存在。大数据的价值只有在数据关联、比对分析后方能体现出来。造成这一问题的原因主要有两点,一方面由于被审计单位业务各不相同,审计机关从多个口径获取的数据普遍存在结构不一致、信息不完整、勾稽关系无法对应等问题,数据关联匹配存在障碍。另一方面,由于审计人员自身存在技术瓶颈,思路不够开拓,习惯依靠传统SQL查询语句,未掌握大数据信息抽取、模糊匹配等技术,较难突破数据关联匹配的难题,从而导致审计过程中部分重大问题应发现未发现。
3.数据安全风险。大数据审计环境下,审计人员在开展日常审计业务中,常常忽视数据安全风险。数据安全风险主要包括:一是数据在审计人员间的调取、使用缺乏有效的授权约束机制;二是数据在存储和转移过程中遇到的数据泄密和数据丢失;三是数据在现场审计结束后缺乏统一的数据移交和保密措施。
二、大数据环境下审计风险的防控对策
(一)强化信息系统的内部控制,提升数据规范化水平。现阶段,审计人员应密切关注被审计单位内部信息系统的内控有效性,通过业务穿行测试等措施对被审计单位信息系统的有效性进行合理评估,减少人为因素导致的数据差错,提升信息系统的可靠性、稳定性和安全性;其次是要不断加强对被审计单位业务人员的职业道德教育,提升业务核算能力和水平,不断提升数据存储的规范化水平,切实提升审计现场效率。
(二)加快数据模板采集共享平台建设,提升数据采集效率。审计机关应进一步加强对常见的数据库软件及数据存储软件数据采集模板的集成开发与共享建设,不断丰富数据模板采集平台的内容,逐一编制数据采集操作手册,不断提升审计人员的采集效率。
(三)加大数据审计培训,提升数据分析水平。大数据审计环境下,审计人员的审计思路是决定审计质量的一个重要因素。面对大量的原始数据和表格和有限的现场审计时间,审计人员必须尽快熟悉被审计单位的数据结构,围绕审计目标形成审计工作思路,从纷繁复杂的数据中查找出审计疑点,从而提高审计质量和效率。在大数据审计环境下,要不断加强对审计人员的业务培训,以审计案例、交流研讨及数据分析平台等多种形式,不断丰富审计人员的工作思路,扎实提升数据分析水平。
(四)完善数据保密制度,严防数据泄密。建立大数据审计环境下的数据管理使用制度,审计人员应该在指定的终端登录数据中心进行数据分析,数据审计人员在经过分析后需要下载的中间表和最终表应该经过严格的审批流程后由技术人员进行下载。由于电子数据无形性和脆弱性的固有属性,在使用移动存储设备存储的同时,还应将数据刻制成光盘以作备份。同时,审计人员在使用数据时,还应和数据提供部门签订数据保密协议,保证不对外泄露相关资料。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21