大数据入门你必须知道的关键词
算法与分析法
算法 (Algorithms)-可以完成某种数据分析的数学公式。算法被用于软件处理与分析输入的数据。
分析法(Analytics)–用于发现数据的内在涵义。通过分析,无用杂乱的数据可以转化成有益的结论。这里的重点是数据的影响力,而不是复杂的软件系统。这可能就是为何大家使用数据来完成自己的论述。数据分析有三种不同的类型:
描述性分析(Descriptive Analytics)-把大数据分成小块的信息分析,类似于总结数据所描述的故事。描述性分析不呈现每一组细节和数据,它描述了数据的基本特征,完成从“数据”到“信息”的转化。
预测性分析(Predictive analysis)–大数据分析方法中最有价值的一种分析方法,这种方法有助于预测个人未来(近期)的行为。通过使用各种不同的数据集,来识别风险和机遇。预测很难达到100%的准确性,但是它提供了未来趋势的见解。这种预测分析通常包含了数据挖掘,机器学习和统计学。
规范性分析 (Prescriptive Analytics)–不仅要利用“当前和过去的数据”,还加入综合考虑其他影响因素,在对比分析所有可能方案的基础上,提出“可以直接用于决策的建议或方案”。规范性分析实现了从“知识”到“智慧(决定)”的转变。云计算与数据
云计算(Cloud computing)– 云计算可用于任何时间与地点。它是构建在网络上的分布式计算系统,数据文件是存储于网络(即云端)而非硬盘。
数据库即服务(Database-as-a-Service)–部署在云端的数据库,即用即付,例如亚马逊云服务(AWS: Amazon Web Services)。DaaS为公司们提供了高效快捷的获取数据的方法,也自2015年来在市场中占有着举足轻重的作用。
数据挖掘(Data mining)–从数据集中发掘特定模式或信息的过程。数据挖掘着重利用大数据作分析,过程也利用了人工智能,机器学习或统计学等知识。
黑暗数据(Dark Data)-黑暗数据是被收集以及处理的商业信息,但从未被投入真正的用处。黑暗数据可以被理解为在黑暗中等待被分析的信息。很多公司甚至没有意识到他们所有的潜在数据。
数据库(Database)–一个以某种特定的技术来存储数据集合的仓库,它包含了表格,图等。数据库也可被并入数据库管理系统[Database Management System],软件用于数据分析。
物联网的世界
Hadoop (Apache Hadoop)–一个开源的分布式系统基础框架,可用于开发分布式程序,进行大数据的运算与存储。Hadoop是一个由Apache基金会所开发的分布式系统基础架构,充分利用集群的威力进行高速运算和存储。
物联网(Internet of Things)–在普通的设备中装上传感器,使这些设备能够在任何时间任何地点与网络相连,例如你的手机,可穿戴设备或车等。物联网包含了大量数据,使它在数据科学中有着重要的地位。除了物联网以外,我们还有:
万物网(Internet of Everything):将人,程序,数据和事物结合一起使得网络连接变得更加相关,更有价值。万物网将信息转化为行动,给企业,个人和国家创造新的功能,并带来更加丰富的体验和前所未有的经济发展机遇。
机器学习(Machine learning)–人工智能的一部分,指的是机器能够从它们所完成的任务中进行自我学习,通过长期的累积实现自我改进。机器学习算法是一类从数据中自动分析获得规律并对未知数据进行预测的算法。它使计算机具有智慧,不需要科学家的额外时间去优化性能而发展。
MapReduce– MapReduce是面向大数据并行处理的计算模型、框架和平台。这个模型可被分为两个不同的概念,Map(映射)函数用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。
神经网络(Neural Network)-人工神经网络模型是模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。它预测了不同的数学函数,依靠系统的复杂程度处理复杂信息。深度学习源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。
NoSQL– NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,提倡运用非关系型的数据存储。这类数据库泛指传统关系型数据库以外的其他类型的数据库。这类数据库有更强的一致性,能处理超大规模和高并发的数据。
总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型进行挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目,因此不能了解到事物的真正本质,而大数据时代的来临,一切真相将会展现在人们面前。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21