大数据入门你必须知道的关键词
算法与分析法
算法 (Algorithms)-可以完成某种数据分析的数学公式。算法被用于软件处理与分析输入的数据。
分析法(Analytics)–用于发现数据的内在涵义。通过分析,无用杂乱的数据可以转化成有益的结论。这里的重点是数据的影响力,而不是复杂的软件系统。这可能就是为何大家使用数据来完成自己的论述。数据分析有三种不同的类型:
描述性分析(Descriptive Analytics)-把大数据分成小块的信息分析,类似于总结数据所描述的故事。描述性分析不呈现每一组细节和数据,它描述了数据的基本特征,完成从“数据”到“信息”的转化。
预测性分析(Predictive analysis)–大数据分析方法中最有价值的一种分析方法,这种方法有助于预测个人未来(近期)的行为。通过使用各种不同的数据集,来识别风险和机遇。预测很难达到100%的准确性,但是它提供了未来趋势的见解。这种预测分析通常包含了数据挖掘,机器学习和统计学。
规范性分析 (Prescriptive Analytics)–不仅要利用“当前和过去的数据”,还加入综合考虑其他影响因素,在对比分析所有可能方案的基础上,提出“可以直接用于决策的建议或方案”。规范性分析实现了从“知识”到“智慧(决定)”的转变。云计算与数据
云计算(Cloud computing)– 云计算可用于任何时间与地点。它是构建在网络上的分布式计算系统,数据文件是存储于网络(即云端)而非硬盘。
数据库即服务(Database-as-a-Service)–部署在云端的数据库,即用即付,例如亚马逊云服务(AWS: Amazon Web Services)。DaaS为公司们提供了高效快捷的获取数据的方法,也自2015年来在市场中占有着举足轻重的作用。
数据挖掘(Data mining)–从数据集中发掘特定模式或信息的过程。数据挖掘着重利用大数据作分析,过程也利用了人工智能,机器学习或统计学等知识。
黑暗数据(Dark Data)-黑暗数据是被收集以及处理的商业信息,但从未被投入真正的用处。黑暗数据可以被理解为在黑暗中等待被分析的信息。很多公司甚至没有意识到他们所有的潜在数据。
数据库(Database)–一个以某种特定的技术来存储数据集合的仓库,它包含了表格,图等。数据库也可被并入数据库管理系统[Database Management System],软件用于数据分析。
物联网的世界
Hadoop (Apache Hadoop)–一个开源的分布式系统基础框架,可用于开发分布式程序,进行大数据的运算与存储。Hadoop是一个由Apache基金会所开发的分布式系统基础架构,充分利用集群的威力进行高速运算和存储。
物联网(Internet of Things)–在普通的设备中装上传感器,使这些设备能够在任何时间任何地点与网络相连,例如你的手机,可穿戴设备或车等。物联网包含了大量数据,使它在数据科学中有着重要的地位。除了物联网以外,我们还有:
万物网(Internet of Everything):将人,程序,数据和事物结合一起使得网络连接变得更加相关,更有价值。万物网将信息转化为行动,给企业,个人和国家创造新的功能,并带来更加丰富的体验和前所未有的经济发展机遇。
机器学习(Machine learning)–人工智能的一部分,指的是机器能够从它们所完成的任务中进行自我学习,通过长期的累积实现自我改进。机器学习算法是一类从数据中自动分析获得规律并对未知数据进行预测的算法。它使计算机具有智慧,不需要科学家的额外时间去优化性能而发展。
MapReduce– MapReduce是面向大数据并行处理的计算模型、框架和平台。这个模型可被分为两个不同的概念,Map(映射)函数用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。
神经网络(Neural Network)-人工神经网络模型是模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。它预测了不同的数学函数,依靠系统的复杂程度处理复杂信息。深度学习源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。
NoSQL– NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,提倡运用非关系型的数据存储。这类数据库泛指传统关系型数据库以外的其他类型的数据库。这类数据库有更强的一致性,能处理超大规模和高并发的数据。
总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型进行挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目,因此不能了解到事物的真正本质,而大数据时代的来临,一切真相将会展现在人们面前。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16