税务领域大数据如何应用
一 、税务大数据产生背景
1.金税工程三期的发展
"金税工程"三期属于国家级信息系统工程,统一全国国地税征管系统,搭建统一纳税服务平台,实现全国税收数据大采集。金税三期2013年部分地区试点,2016年底前全国上线,为税改提供强大的数据支持。
2.互联网+税务的推动
在目前"互联网+"时代背景下,云计算、人工智能、GigData、互联网、物联网等已成为当下行业战略资源。
大数据的处理与应用、多方共享,即可加强税局税收征管,同时也可通过数据分析,为纳税人提供更好的创新服务。
3.信息化是时代的需要
虽然我国已迈入信息化管理阶段,但我国税局系统大部分仅为内部共享,不能实现全过打通,甚至部门省市当地国地税均无法实现信息共享,税务信息化的发展,将全国税务系统打通,及时掌握纳税人经济业务和税收的来龙去脉,让偷逃税行为扼杀在摇篮。
二 、税务大数据的意义
1.提升征管效率
通过对纳税人数据的采集,强化大数据分析,纳税人历史行为、最新动态呈现在税务征管管理者面前,从而可以提升征管与服务;经过数据比对与分析,实时监控纳税人三流问题,从而提高纳税人尊从度,防止偷逃税,同时也可作为纳税人信用等级评定基础依据。
2.数据驱动创新
在历史税收信息化来看,税收信息共享没有得到有效利用,如与工商部门信息共享("五证合一"的目的之一),目前通过 Data Sharing ,可以摆脱滞后的传统数据分析,提高对错综复杂数据持续分析,进行风险评估、决策支持、预案制定等,使税务征管、稽查部门保持持续应变与创新能力。 三、大数据的应用
1.互联网+发票
金税三期、新防伪税控系统,将对增值税发票票面信息(包括纳税人名称、数量、单价、税率、税额等)进行全面采集,发票在线开具数据实时传送,离线开票需在规定时间上传,否则导致无法开票。纳税人发票信息采集,税务征管将对发票信息深度分析、挖掘,快速、全面将纳税人经营情况反馈与呈现,切实加强后续管理,防范征管漏洞。
2.电子税局——O2O办税
受电子商务高质量服务的影响,电子税务局上线也形成了线上(Online)受理到线下(Offline)办理的O2O(线上线下)的纳税服务新模式。 四、税务大数据带来的机遇与挑战 1.机遇
Big Data 与"大规模数据"一脉相承,其数据体量、复杂性远超过传统数据。税务数据不再仅仅是处理对象,而是一种资源,甚至可以说是资产。对于庞大的数据系统,数据支持者或提供给决策者来讲,数据魔方、分析模型显得尤为重要,我们需要熟练高效的对动态数据进行自我调整、矫正分析等。
以前,税务征管数据就是"税务信息孤岛",无法给各部门进行交换共享或交叉检查,税务大数据时代的到来,使得涉税信息交换平台和公共信用信息平台互通,政府部门深度信息融合,数据多方比对,差异逐渐发现,征管更加清晰。
2.挑战
平台挑战:由于税务大数据平台建设涉及到多个政府部门,所以税务大数据平台建设、形成大数据解决方案、进行可视化数据分析极具挑战性.........
安全挑战:税务数据信息庞大,如:纳税人报送信息、税务机关掌握信息、其他平台方涉及信息等安全性存在较大隐患.........
人才挑战:应高度重视"互联网+税务"人才培养的重要性,加强系统化培训学习,利用互联网提高征管水平,使用征管过程中能高效对涉水数据搜集、研究、深度挖掘等。
3.税务大数据存在问题
在税局大数据提供便利的同时,涉税数据安全需要得到保障——信息安全政策不完善;
征管软件、系统不统一(征管系统、纳税评估系统、税总软件系统、地方软件系统等)导致信息重复,效率不高——税务大数据整合不到位;
数据运用不彻底、大数据认知不够,仍旧基于传统数据分析处理——大数据思维缺乏。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21