京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为保险业提供另一种视角_数据分析师
在客户需求的精确锁定方面,大数据给保险业带来了很多便利。以前,对于客户的分类局限于“客户属于哪一类”,而现在,则扩展到“客户是哪一类”。
传统的精算技术只在一定纬度量化风险,很难充分反映风险的复杂性。而在互联网大数据时代,则前所未有的创造了风控每个投保标的的可能,从未有过如此多纬度、低成本的数据,如此系统、新鲜地提供给保险业。
什么星座的人最喜欢买保险?哪个地区的人最喜欢给自己买保险?这些曾经看起来无关乎保费的问题,在互联网大数据时代背景下,也成为了险企定位客户的另一种视角。在泰康人寿的保单中,最喜欢买保险的是天秤座,而最不喜欢买保险的是白羊座;最喜欢给自己买保险的是宁波人,而最不喜欢给自己买保险的则是陕西人。
“上述结论没有什么道理,这是泰康人寿的数据分析出来的。以前,对于客户的分类局限于"客户属于哪一类",而现在,则扩展到"客户是哪一类"。”泰康人寿首席信息官刘大为在日前召开的“互联网大数据与精算创新论坛”上,用几个有趣的结论介绍了大数据时代保险业正在发生的变革。
精准定位
我的客户在这里
“在当前时代背景下,可以运用大数据分析法来整合分析金融保险需求的关联度,在不同方向、专业形式的共同配合下,做好大数据的升级分析整合的系统工程,从客户的角度,综合统筹各种信息,捕捉各种需求,从而寻找潜在的客户,并预测客户的具体需求。”中国保监会原副主席、中国精算师协会创始人魏迎宁在论坛上表示,从保险业来看,在客户需求的精确锁定方面,大数据给我们带来了很多便利。
在大数据背景下,除了对数据的纵向分析之外,可以从横向来分析消费者的需求。客户的具体收入水平、文化程度、价值观念,也会影响其对保险的态度,通过对网络消费的数额、职业、学历等数据所进行的分析,也可以作为保险需求分析的重要部分。还可以通过搜集互联网用户的地域分布,搜索关键词、购物习惯、流览记录和兴趣爱好等一系列的数据,在保险产品消费中实现需求定向、偏好定向,真正做到精准化、个性化营销。
以“双十一”当天卖出1.86亿单的退运险为例,据统计,此类产品索赔率在50%以上,对保险公司的利润只有5%左右,仅从保险公司的角度,这类产品并不是很成功,但有很多保险公司都有意、愿意去开发这类保险。魏迎宁分析道:“客户购买退运险后,保险公司就可以获得该客户的基本信息,包括手机号和银行账户信息,并能够了解该客户购买的产品,从而实现精准推送。假设该客户购买并退货的是婴儿奶粉,保险公司就可以估计该客户家中有婴儿,可以向其推荐关于儿童疾病、教育等相关的保险产品,这显然比5%的利润更有吸引力。”
风险可测
传统精算遇危机
互联网大数据不仅为险企带来了另一种找客户的方法,也为险企解释风险的技术带来了革命性的变化。
“从保险业来看,传统的精算技术只在一定纬度量化风险,很难充分反映风险的复杂性。而互联网大数据时代,则前所未有的创造了风控每个投保标的的可能,从未有过如此多纬度、低成本的数据,如此系统、新鲜地提供给保险业。”魏迎宁表示,过去成千上百的人都被放在同一风险水平之上,但事实上这是不可能的,大多数人都在支付多一笔的保费。传统精算研究的是评估数,很少涉及个案,保险公司卖车险的时候,考虑的因素有年龄、性别、婚姻状况、驾驶记录、收入、职业、教育、背景等等,但是,通过大数据的分析,可以解决现有的风险控制问题,为客户制订个性化的保单,运用社交网络,改善产品和服务,影响目标客户,通过对已有信息的分析,保险公司可以获得更准确的定价模型,提供个性化的解决方案,不再像现在一样,所有人都面对相同的风险测量准则。
当然,随着革命性的变化而生的,还有巨大的挑战。中国精算师协会副会长、人保财险副总裁王和在论坛上对精算师提出了两个问题:无人驾驶车的出现,将避免车辆之间发生碰撞,那占了财险保费收入70%以上的车险怎么办?基于物联网的健康管理系统的出现,将使生命成为可知,那健康险还保什么?王和认为,计算科学的发展以及信息技术的突破,将导致“计算能力”出现产品化、商品化和日用品化的趋势,特别是人工智能的出现,将颠覆性地挑战所有“依据规则”生存的职业,包括传统精算。
大数据人才
提高行业竞争力
面向未来,传统的计算工匠将难以生存,但真正的人才将成为最先进的技术。
正如刘大为所言,“在互联网大数据时代,最重要的技术,是人才”。从实际情况来看,大数据人才必须有数学专业背景、懂计算机,而在这些硬件条件之外,论坛嘉宾普遍认为,创新能力更为重要。
魏迎宁表示,不拘泥于现有的等待客户的被动模式,预先发现潜在需求者,精准定位需求,运用大数据分析消费者的需求,将为精算职业发展提供更为广阔的空间。搜集获取、分析与保险需求要素有相关关系的所有数据,找到有保险需求的潜在客户群以及他们具体需要的保险产品,最终由销售人员向他们推荐介绍。这种大数据分享,将对提高保险业竞争力,降低销售误导,重塑保险业规范的品牌形象发挥重要作用。
不过,与数学背景、计算机背景、沟通能力、创新能力相比,刘大为坦言:“最为重要的是好奇心。”刘大为对记者说:“做大数据分析,不会有人告诉你做什么、有人给你他的需求,一定是好奇心促使他们在固有的数据中发现了新的商机、新的服务。在这一点上,"80后"、"90后"找到了很多与众不同的结果。但这种人才是非常少的,因此,保险公司应该在现有的基础上加快对大数据人才的积累,这是一个门槛,更是一种挑战。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01