
Hilbert空间递归演示_数据分析师
Hilbert空间填充曲线在图像采样等方面十分有用关于什么希尔伯特
空间填充曲线看这里:http://en.wikipedia.org/wiki/Hilbert_curve
程序效果:
模拟Hilbert空间填充曲线效果,点击鼠标自动叠加!运行效果截图
Hilbert源程序代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
package com.gloomyfish.image.hilbert;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Point;
public class Hilbert {
public static final int WHEELSIZE = 1024;
// four edges
public static final int NORTH = 0;
public static final int EAST = 90;
public static final int SOUTH = 180;
public static final int WEST = 270;
// four corners
public static final int NE = 45;
public static final int SE = 135;
public static final int SW = 225;
public static final int NW = 315;
// attributes
private Point location;
private Color[] colorWheel;
private int colorIdx;
public Hilbert() {
// build color lookup table
this.colorWheel = new Color[1024];
for (int i = 0; i < 128; ++i)
this.colorWheel[i] = new Color(0, 255 - i, i);
for (int j = 128; j < 256; ++j)
this.colorWheel[j] = new Color(0, j, j);
for (int k = 0; k < 256; ++k)
this.colorWheel[(k + 256)] = new Color(0, 255 - k, 255);
for (int l = 0; l < 128; ++l)
this.colorWheel[(l + 512)] = new Color(0, l, 255 - l);
for (int i1 = 0; i1 < 128; ++i1)
this.colorWheel[(i1 + 640)] = new Color(0, 127 - i1, 127 - i1);
for (int i2 = 0; i2 < 256; ++i2)
this.colorWheel[(i2 + 768)] = new Color(0, i2, 0);
this.colorIdx = 0;
}
public void process(Graphics graphic, int level, int width, int height) {
this.location = null;
if(level > 32 )
{
graphic.drawString("could get max depth is 32!", 40, 40);
return;
}
hilbert(graphic, level, 0, 0, width, height, 0, 225);
}
public void hilbert(Graphics g, int depth, int startx, int starty, int width, int height, int startgray, int endgray) {
int centerX = width / 2;
int centerY = height / 2;
if (depth == 0) {
if (this.location != null) {
g.setColor(this.colorWheel[this.colorIdx]);
g.drawLine(this.location.x, this.location.y,
startx + centerX, starty + centerY);
if (++this.colorIdx >= 1024)
this.colorIdx = 0;
}
this.location = new Point(startx + centerX, starty + centerY);
return;
}
switch (startgray) {
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05