Python读取图片属性信息的实现方法
这篇文章介绍了利用Python读取图片属性信息的方法,读取的内容包括GPS 信息、图片分辨率、图片像素、设备商、拍摄设备等,有需要的朋友们可以参考借鉴。
本文是利用Python脚本读取图片信息,有几个说明如下:
1、没有实现错误处理
2、没有读取所有信息,大概只有 GPS 信息、图片分辨率、图片像素、设备商、拍摄设备等
3、简单修改后应该能实现暴力修改图片的 GPS 信息
4、但对于本身没有 GPS 信息的图片,实现则非常复杂,需要仔细计算每个描述符的偏移量
脚本运行后,读取结果如下
脚本读取的信息
这里和 Windows 属性查看器读到的内容完全一致
图片信息2
源码如下
# -*- coding:utf-8 -*-
import binascii
class ParseMethod(object):
@staticmethod
def parse_default(f, count, offset):
pass
@staticmethod
def parse_latitude(f, count, offset):
old_pos = f.tell()
f.seek(12 + offset)
latitude = [0,0,0]
for i in xrange(count):
byte = f.read(4)
numerator = byte.encode('hex')
byte = f.read(4)
denominator = byte.encode('hex')
latitude[i] = float(int(numerator, 16)) / int(denominator, 16)
print 'Latitude:\t%.2f %.2f\' %.2f\"' % (latitude[0], latitude[1], latitude[2])
f.seek(old_pos)
@staticmethod
def parse_longtitude(f, count, offset):
old_pos = f.tell()
f.seek(12 + offset)
longtitude = [0,0,0]
for i in xrange(count):
byte = f.read(4)
numerator = byte.encode('hex')
byte = f.read(4)
denominator = byte.encode('hex')
longtitude[i] = float(int(numerator, 16)) / int(denominator, 16)
print 'Longtitude:\t%.2f %.2f\' %.2f\"' % (longtitude[0], longtitude[1], longtitude[2])
f.seek(old_pos)
@staticmethod
def parse_make(f, count, offset):
old_pos = f.tell()
f.seek(12 + offset)
byte = f.read(count)
a = byte.encode('hex')
print 'Make:\t\t' + binascii.a2b_hex(a)
f.seek(old_pos)
@staticmethod
def parse_model(f, count, offset):
old_pos = f.tell()
f.seek(12 + offset)
byte = f.read(count)
a = byte.encode('hex')
print 'Model:\t\t' + binascii.a2b_hex(a)
f.seek(old_pos)
@staticmethod
def parse_datetime(f, count, offset):
old_pos = f.tell()
f.seek(12 + offset)
byte = f.read(count)
a = byte.encode('hex')
print 'DateTime:\t' + binascii.a2b_hex(a)
f.seek(old_pos)
# rational data type, 05
@staticmethod
def parse_xresolution(f, count, offset):
old_pos = f.tell()
f.seek(12 + offset)
byte = f.read(4)
numerator = byte.encode('hex')
byte = f.read(4)
denominator = byte.encode('hex')
xre = int(numerator, 16) / int(denominator, 16)
print 'XResolution:\t' + str(xre) + ' dpi'
f.seek(old_pos)
@staticmethod
def parse_yresolution(f, count, offset):
old_pos = f.tell()
f.seek(12 + offset)
byte = f.read(4)
numerator = byte.encode('hex')
byte = f.read(4)
denominator = byte.encode('hex')
xre = int(numerator, 16) / int(denominator, 16)
print 'YResolution:\t' + str(xre) + ' dpi'
f.seek(old_pos)
@staticmethod
def parse_exif_ifd(f, count, offset):
old_pos = f.tell()
f.seek(12 + offset)
byte = f.read(2)
a = byte.encode('hex')
exif_ifd_number = int(a, 16)
for i in xrange(exif_ifd_number):
byte = f.read(2)
tag_id = byte.encode('hex')
#print tag_id,
byte = f.read(2)
type_n = byte.encode('hex')
#print type_n,
byte = f.read(4)
count = byte.encode('hex')
#print count,
byte = f.read(4)
value_offset = byte.encode('hex')
#print value_offset
value_offset = int(value_offset, 16)
EXIF_IFD_DICT.get(tag_id, ParseMethod.parse_default)(f, count, value_offset)
f.seek(old_pos)
@staticmethod
def parse_x_pixel(f, count, value):
print 'X Pixels:\t' + str(value)
@staticmethod
def parse_y_pixel(f, count, value):
print 'y Pixels:\t' + str(value)
@staticmethod
def parse_gps_ifd(f, count, offset):
old_pos = f.tell()
f.seek(12 + offset)
byte = f.read(2)
a = byte.encode('hex')
gps_ifd_number = int(a, 16)
for i in xrange(gps_ifd_number):
byte = f.read(2)
tag_id = byte.encode('hex')
#print tag_id,
byte = f.read(2)
type_n = byte.encode('hex')
#print type_n,
byte = f.read(4)
count = byte.encode('hex')
#print count,
byte = f.read(4)
value_offset = byte.encode('hex')
#print value_offset
count = int(count, 16)
value_offset = int(value_offset, 16)
GPS_IFD_DICT.get(tag_id, ParseMethod.parse_default)(f, count, value_offset)
f.seek(old_pos)
IFD_dict = {
'010f' : ParseMethod.parse_make ,
'0110' : ParseMethod.parse_model ,
'0132' : ParseMethod.parse_datetime ,
'011a' : ParseMethod.parse_xresolution ,
'011b' : ParseMethod.parse_yresolution ,
'8769' : ParseMethod.parse_exif_ifd ,
'8825' : ParseMethod.parse_gps_ifd
}
EXIF_IFD_DICT = {
'a002' : ParseMethod.parse_x_pixel ,
'a003' : ParseMethod.parse_y_pixel
}
GPS_IFD_DICT = {
'0002' : ParseMethod.parse_latitude ,
'0004' : ParseMethod.parse_longtitude
}
with open('image.jpg', 'rb') as f:
byte = f.read(2)
a = byte.encode('hex')
print 'SOI Marker:\t' + a
byte = f.read(2)
a = byte.encode('hex')
print 'APP1 Marker:\t' + a
byte = f.read(2)
a = byte.encode('hex')
print 'APP1 Length:\t' + str(int(a, 16)) + ' .Dec'
byte = f.read(4)
a = byte.encode('hex')
print 'Identifier:\t' + binascii.a2b_hex(a)
byte = f.read(2)
a = byte.encode('hex')
print 'Pad:\t\t' + a
print
print 'Begin to print Header.... '
print 'APP1 Body: '
byte = f.read(2)
a = byte.encode('hex')
print 'Byte Order:\t' + a
byte = f.read(2)
a = byte.encode('hex')
print '42:\t\t' + a
byte = f.read(4)
a = byte.encode('hex')
print '0th IFD Offset:\t' + a
print 'Finish print Header'
print 'Begin to print 0th IFD....'
print
#print 'Total: ',
byte = f.read(2)
a = byte.encode('hex')
interoperability_number = int(a, 16)
#print interoperability_number
for i in xrange(interoperability_number):
byte = f.read(2)
tag_id = byte.encode('hex')
#print tag_id,
byte = f.read(2)
type_n = byte.encode('hex')
#print type_n,
byte = f.read(4)
count = byte.encode('hex')
#print count,
byte = f.read(4)
value_offset = byte.encode('hex')
#print value_offset
count = int(count, 16)
value_offset = int(value_offset, 16)
# simulate switch
IFD_dict.get(tag_id, ParseMethod.parse_default)(f, count, value_offset)
print
print 'Finish print 0th IFD....'
总结
利用Python读取图片属性信息的实现方法到这就基本结束了,大家都学会了吗?希望这篇文章对大家的学习或者工作带来一定的帮助,
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31