python装饰器与递归算法详解
1、python装饰器
刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了。总结了一下解释得比较好的,通俗易懂的来说明一下:
小P闲来无事,随便翻看自己以前写的一些函数,忽然对一个最最最基础的函数起了兴趣:
def sum1():
sum = 1 + 2
print(sum)
sum1()
此时小P想看看这个函数执行用了多长时间,所以写了几句代码插进去了:
import time
def sum1():
start = time.clock()
sum = 1+2
print(sum)
end = time.clock()
print("time used:",end - start)
sum1()
运行之后,完美~~
可是随着继续翻看,小P对越来越多的函数感兴趣了,都想看下他们的运行时间如何,难道要一个一个的去改函数吗?当然不是!我们可以考虑重新定义一个函数timeit,将sum1的引用传递给他,然后在timeit中调用sum1并进行计时,这样,我们就达到了不改动sum1定义的目的,而且,不论小P看了多少个函数,我们都不用去修改函数定义了!
import time
def sum1():
sum = 1+ 2
print (sum)
def timeit(func):
start = time.clock()
func()
end =time.clock()
print("time used:", end - start)
timeit(sum1)
咂一看,没啥问题,可以运行!但是还是修改了一部分代码,把sum1() 改成了timeit(sum1)。这样的话,如果sum1在N处都被调用了,你就不得不去修改这N处的代码。所以,我们就需要杨sum1()具有和timeit(sum1)一样的效果,于是将timeit赋值给sum1。可是timeit是有参数的,所以需要找个方法去统一参数,将timeit(sum1)的返回值(计算运行时间的函数)赋值给sum1。
import time
def sum1():
sum = 1+ 2
print (sum)
def timeit(func):
def test():
start = time.clock()
func()
end =time.clock()
print("time used:", end - start)
return test
sum1 = timeit(sum1)
sum1()
这样一个简易的装饰器就做好了,我们只需要在定义sum1以后调用sum1之前,加上sum1= timeit(sum1),就可以达到计时的目的,这也就是装饰器的概念,看起来像是sum1被timeit装饰了!Python于是提供了一个语法糖来降低字符输入量。
import time
def timeit(func):
def test():
start = time.clock()
func()
end =time.clock()
print("time used:", end - start)
return test
@timeit
def sum1():
sum = 1+ 2
print (sum)
sum1()
重点关注第11行的@timeit,在定义上加上这一行与另外写sum1 = timeit(sum1)完全等价。
2、递归算法
递归算法是一种直接或者间接地调用自身算法的过程。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。
递归算法解决问题的特点:
(1) 递归就是在过程或函数里调用自身。
(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
(3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。
(4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。
举个栗子:对一个数字进行除2求值,直到小于等于1时退出并输出结果
def divide(n,val):
n += 1
print(val)
if val / 2 > 1:
aa = divide(n,val/2)
print('the num is %d,aa is %f' % (n,aa))
print('the num is %d,val is %f' % (n,val))
return(val)
divide(0,50.0)
结果说明(不return时相当于嵌套循环,一层层进入在一层层退出):
50.0
25.0
12.5
6.25
3.125
1.5625
the num is 6,val is 1.562500
the num is 5,aa is 1.562500
the num is 5,val is 3.125000
the num is 4,aa is 3.125000
the num is 4,val is 6.250000
the num is 3,aa is 6.250000
the num is 3,val is 12.500000
the num is 2,aa is 12.500000
the num is 2,val is 25.000000
the num is 1,aa is 25.000000
the num is 1,val is 50.000000
2、递归时return:
def divide(n,val):
n += 1
print(val)
if val / 2 > 1:
aa = divide(n,val/2)
print('the num is %d,aa is %f' % (n,aa))
return(aa)
print('the num is %d,val is %f' % (n,val))
return(val)
divide(0,50.0)
结果说明(return时就直接结束本次操作):
50.0
25.0
12.5
6.25
3.125
1.5625
the num is 6,val is 1.562500
the num is 5,aa is 1.562500
the num is 4,aa is 1.562500
the num is 3,aa is 1.562500
the num is 2,aa is 1.562500
the num is 1,aa is 1.562500
用递归实现斐波那契函数
def feibo(first,second,stop,list):
if first >= stop or second >= stop:
return list
else:
sum = first + second
list.append(sum)
if sum <= stop:
return feibo(second,sum,stop,list)
return list
if __name__ == '__main__':
first = int(raw_input('please input the first number:'))
second = int(raw_input('please input the second number:'))
stop = int(raw_input('please input the stop number:'))
l = [first,second]
a = feibo(first,second,stop,l)
print(a)
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21