Python实现的数据结构与算法之快速排序详解
本文实例讲述了Python实现的数据结构与算法之快速排序。分享给大家供大家参考。具体分析如下:
一、概述
快速排序(quick sort)是一种分治排序算法。该算法首先 选取 一个划分元素(partition element,有时又称为pivot);接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分)、划分元素pivot、right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上;然后分别对left和right两个部分进行递归排序。
其中,划分元素的 选取 直接影响到快速排序算法的效率,通常选择列表的第一个元素或者中间元素或者最后一个元素作为划分元素,当然也有更复杂的选择方式;划分 过程根据划分元素重排列表,是快速排序算法的关键所在,该过程的原理示意图如下:
<-- 选取划分元素 -->
<-- 划分过程 -->
<-- 划分结果 -->
快速排序算法的优点是:原位排序(只使用很小的辅助栈),平均情况下的时间复杂度为 O(n log n)。快速排序算法的缺点是:它是不稳定的排序算法,最坏情况下的时间复杂度为 O(n2)。
二、Python实现
1、标准实现
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def stdQuicksort(L):
qsort(L, 0, len(L) - 1)
def qsort(L, first, last):
if first < last:
split = partition(L, first, last)
qsort(L, first, split - 1)
qsort(L, split + 1, last)
def partition(L, first, last):
# 选取列表中的第一个元素作为划分元素
pivot = L[first]
leftmark = first + 1
rightmark = last
while True:
while L[leftmark] <= pivot:
# 如果列表中存在与划分元素pivot相等的元素,让它位于left部分
# 以下检测用于划分元素pivot是列表中的最大元素时,
#防止leftmark越界
if leftmark == rightmark:
break
leftmark += 1
while L[rightmark] > pivot:
# 这里不需要检测,划分元素pivot是列表中的最小元素时,
# rightmark会自动停在first处
rightmark -= 1
if leftmark < rightmark:
# 此时,leftmark处的元素大于pivot,
#而rightmark处的元素小于等于pivot,交换二者
L[leftmark], L[rightmark] = L[rightmark], L[leftmark]
else:
break
# 交换first处的划分元素与rightmark处的元素
L[first], L[rightmark] = L[rightmark], L[first]
# 返回划分元素pivot的最终位置
return rightmark
2、Pythonic实现
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def pycQuicksort(L):
if len(L) <= 1: return L
return pycQuicksort([x for x in L if x < L[0]]) + \
[x for x in L if x == L[0]] + \
pycQuicksort([x for x in L if x > L[0]])
对比 标准实现 可以看出,Pythonic实现 更简洁、更直观、更酷。但需要指出的是,Pythonic实现 使用了Python中的 列表解析 (List Comprehension,也叫列表展开、列表推导),每一次 递归排序 都会产生新的列表,因此失去了快速排序算法本来的 原位排序 的优点。
三、算法测试
#!/usr/bin/env python
# -*- coding: utf-8 -*-
if __name__ == '__main__':
L = [54, 26, 93, 17, 77, 31, 44, 55, 20]
M = L[:]
print('before stdQuicksort: ' + str(L))
stdQuicksort(L)
print('after stdQuicksort: ' + str(L))
print('before pycQuicksort: ' + str(M))
print('after pycQuicksort: ' + str(pycQuicksort(M)))
运行结果:
$ python testquicksort.py
before stdQuicksort: [54, 26, 93, 17, 77, 31, 44, 55, 20]
after stdQuicksort: [17, 20, 26, 31, 44, 54, 55, 77, 93]
before pycQuicksort: [54, 26, 93, 17, 77, 31, 44, 55, 20]
after pycQuicksort: [17, 20, 26, 31, 44, 54, 55, 77, 93]
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30