Python正则表达式使用经典实例
本文给大家总结了17种python正则表达式使用经典实例,非常不错具有参考借鉴价值,下面列出Python正则表达式的几种匹配用法,具体内容如下所示:
1.测试正则表达式是否匹配字符串的全部或部分
regex=ur"" #正则表达式
if re.search(regex, subject):
do_something()
else:
do_anotherthing()
2.测试正则表达式是否匹配整个字符串
regex=ur"\Z" #正则表达式末尾以\Z结束
if re.match(regex, subject):
do_something()
else:
do_anotherthing()
3.创建一个匹配对象,然后通过该对象获得匹配细节(Create an object with details about how the regex matches (part of) a string)
regex=ur"" #正则表达式
match = re.search(regex, subject)
if match:
# match start: match.start()
# match end (exclusive): atch.end()
# matched text: match.group()
do_something()
else:
do_anotherthing()
4.获取正则表达式所匹配的子串(Get the part of a string matched by the regex)
regex=ur"" #正则表达式
match = re.search(regex, subject)
if match:
result = match.group()
else:
result = ""
5. 获取捕获组所匹配的子串(Get the part of a string matched by a capturing group)
regex=ur"" #正则表达式
match = re.search(regex, subject)
if match:
result = match.group(1)
else:
result = ""
6. 获取有名组所匹配的子串(Get the part of a string matched by a named group)
regex=ur"" #正则表达式
match = re.search(regex, subject)
if match:
result = match.group"groupname")
else:
result = ""
7. 将字符串中所有匹配的子串放入数组中(Get an array of all regex matches in a string)
result = re.findall(regex, subject)
8.遍历所有匹配的子串(Iterate over all matches in a string)
for match in re.finditer(r"<(.*?)\s*.*?/\1>", subject)
# match start: match.start()
# match end (exclusive): atch.end()
# matched text: match.group()
9.通过正则表达式字符串创建一个正则表达式对象(Create an object to use the same regex for many operations)
reobj = re.compile(regex)
10.用法1的正则表达式对象版本(use regex object for if/else branch whether (part of) a string can be matched)
reobj = re.compile(regex)
if reobj.search(subject):
do_something()
else:
do_anotherthing()
11.用法2的正则表达式对象版本(use regex object for if/else branch whether a string can be matched entirely)
reobj = re.compile(r"\Z") #正则表达式末尾以\Z 结束
if reobj.match(subject):
do_something()
else:
do_anotherthing()
12.创建一个正则表达式对象,然后通过该对象获得匹配细节(Create an object with details about how the regex object matches (part of) a string)
reobj = re.compile(regex)
match = reobj.search(subject)
if match:
# match start: match.start()
# match end (exclusive): atch.end()
# matched text: match.group()
do_something()
else:
do_anotherthing()
13.用正则表达式对象获取匹配子串(Use regex object to get the part of a string matched by the regex)
reobj = re.compile(regex)
match = reobj.search(subject)
if match:
result = match.group()
else:
result = ""
14.用正则表达式对象获取捕获组所匹配的子串(Use regex object to get the part of a string matched by a capturing group)
reobj = re.compile(regex)
match = reobj.search(subject)
if match:
result = match.group(1)
else:
result = ""
15.用正则表达式对象获取有名组所匹配的子串(Use regex object to get the part of a string matched by a named group)
reobj = re.compile(regex)
match = reobj.search(subject)
if match:
result = match.group("groupname")
else:
result = ""
16.用正则表达式对象获取所有匹配子串并放入数组(Use regex object to get an array of all regex matches in a string)
reobj = re.compile(regex)
result = reobj.findall(subject)
17.通过正则表达式对象遍历所有匹配子串(Use regex object to iterate over all matches in a string)
reobj = re.compile(regex)
for match in reobj.finditer(subject):
# match start: match.start()
# match end (exclusive): match.end()
# matched text: match.group()
字符串替换
1.替换所有匹配的子串
#用newstring替换subject中所有与正则表达式regex匹配的子串
result = re.sub(regex, newstring, subject)
2.替换所有匹配的子串(使用正则表达式对象)
reobj = re.compile(regex)
result = reobj.sub(newstring, subject)
字符串拆分
1.字符串拆分
result = re.split(regex, subject)
2.字符串拆分(使用正则表示式对象)
reobj = re.compile(regex)
result = reobj.split(subject)
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21