热线电话:13121318867

登录
首页精彩阅读Python列表(List)操作方法详解
Python列表(List)操作方法详解
2017-08-28
收藏

Python列表(List)操作方法详解

列表是Python中最基本的数据结构,列表是最常用的Python数据类型,列表的数据项不需要具有相同的类型。列表中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推。
Python有6个序列的内置类型,但最常见的是列表和元组。序列都可以进行的操作包括索引,切片,加,乘,检查成员。此外,Python已经内置确定序列的长度以及确定最大和最小的元素的方法。
一、创建一个列表
只要把逗号分隔的不同的数据项使用方括号括起来即可。如下所示:
代码如下:
list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5 ];
list3 = ["a", "b", "c", "d"];
与字符串的索引一样,列表索引从0开始。列表可以进行截取、组合等。
二、访问列表中的值
使用下标索引来访问列表中的值,同样你也可以使用方括号的形式截取字符,如下所示:
代码如下:
#!/usr/bin/python

list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5, 6, 7 ];

print "list1[0]: ", list1[0]
print "list2[1:5]: ", list2[1:5]

以上实例输出结果:
代码如下:
list1[0]:  physics
list2[1:5]:  [2, 3, 4, 5]
三、更新列表
你可以对列表的数据项进行修改或更新,你也可以使用append()方法来添加列表项,如下所示:
代码如下:
#!/usr/bin/python

list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2 : "
print list[2];
list[2] = 2001;
print "New value available at index 2 : "
print list[2];
以上实例输出结果:
代码如下:
Value available at index 2 :
1997
New value available at index 2 :
2001
四、删除列表元素
可以使用 del 语句来删除列表的的元素,如下实例:
代码如下:
#!/usr/bin/python

list1 = ['physics', 'chemistry', 1997, 2000];

print list1;
del list1[2];
print "After deleting value at index 2 : "
print list1;
以上实例输出结果:
 代码如下:
['physics', 'chemistry', 1997, 2000]
After deleting value at index 2 :
['physics', 'chemistry', 2000]
五、Python列表脚本操作符
列表对 + 和 * 的操作符与字符串相似。+ 号用于组合列表,* 号用于重复列表。

如下所示:

六、Python列表截取
Python的列表截取与字符串操作类型,如下所示:
代码如下:
L = ['spam', 'Spam', 'SPAM!']
操作:

七、Python列表操作的函数和方法
列表操作包含以下函数:
1、cmp(list1, list2):比较两个列表的元素
2、len(list):列表元素个数
3、max(list):返回列表元素最大值
4、min(list):返回列表元素最小值
5、list(seq):将元组转换为列表
列表操作包含以下方法:
1、list.append(obj):在列表末尾添加新的对象
2、list.count(obj):统计某个元素在列表中出现的次数
3、list.extend(seq):在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)
4、list.index(obj):从列表中找出某个值第一个匹配项的索引位置
5、list.insert(index, obj):将对象插入列表
6、list.pop(obj=list[-1]):移除列表中的一个元素(默认最后一个元素),并且返回该元素的值
7、list.remove(obj):移除列表中某个值的第一个匹配项
8、list.reverse():反向列表中元素
9、list.sort([func]):对原列表进行排序


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询