几乎每一刻我们都在为大数据作出“应有的贡献”
这是我们大多数人司空见惯的一天:早上起床后抓起手机看当天天气预报,然后是查询上班路线,再接下来打开汽车导航,上班后通过互联网查询资料,并不时用手机与外面联系,下班后通过手机APP订餐、购买电影或演出票,回家后通过互联网电视收看节目……“不论你喜欢与否,你的生活已经受控于技术”。在《大数据时代的隐私》一书的作者看来,几乎每一刻我们都在为大数据作出“应有的贡献”。当然,就是这样看似再寻常不过的日常生活,我们一天的行踪、偏好(哪怕有时仅仅只是一个闪念),早就暴露无遗,某种意义上,我们越来越像是一个没有私密可言的“透明人”。
技术就是这样一把双刃剑,既会给你带来诸多便利,同时也会在悄无声息中肆意“偷”走你的信息,根本不在乎你的情绪,这正是本书所要阐明的核心所在。书中每一章都展示了人们在家庭和工作中的日常活动如何成为大数据收集的一部分。或因第一作者本人有过白宫首席信息官的特殊经历,对大数据接触较多,对信息技术更为敏感,所以本书能够针对性提出个人避免隐私泄露的实操举措。此外,本书对改进公共监管举措、完善法律的思考亦不乏真知灼见。
上世纪九十年代,我们曾慨叹生活在一个信息爆炸的年代,今天我们则像是生活在一个数据爆炸甚至过剩的年代。资料表明,全球数据正在迅速增长,大约每18个月翻一番。有专家估计,到2020年全球将会有240亿台连接设备,其中一半是可移动的。届时,全球年数据产生量将会达到2009年的45倍。美国统计学家纳特·西尔弗也在《信号与噪声》一书中指出,在大数据时代,人类一天创造的内容甚至超过人类有史以来的所有内容。在本书作者看来,大数据越是这样蓬勃发展,对公众私密生活的威胁越可能“雪上加霜”。
大数据不仅改变了我们,还“战胜”了我们。2016年的“人机大战”无异于大数据对人类智商的一次不经意“嘲弄”:由谷歌公司研造的人工智能系统阿尔法围棋,挑战世界围棋冠军李世石,最终以4:1获胜。就此,中国科学院院士徐宗本一言以蔽之——人工智能的胜利其实就是大数据的胜利。素以智慧自居的人类败给了自己亲手创造的大数据,这是多么大的讽刺!
“悖论”远不止此,我们甚至还没有大数据更了解自己。举个许多人碰到但又不曾留意的例子。当你在互联网上偶尔点开一本书,你可能很快就会发现,你的电脑页面虽然与别人的大体相同,但你点过的那本书,或者与其关联的信息总会及时出现在页面一角。你原本没什么特别感觉,经这么反复刺激,你很可能在潜移默化中慢慢改变原来的看法,至而生成购买欲。还有,当我们打开APP,刚打出一个字,后面常常会联想出一串信息。这些信息绝非空穴来风,要么因为上了热搜榜,要么因为我们曾经浏览过,或者关注过关联的信息。
大数据蕴含无限商机。“数据挖掘的概念已经存在了至少20年”,“一项数据业务预测2020年企业持有的数据量将超过2012年收集量的30倍”。另一方面,近年来关于大数据泄露公众个人信息的案例屡见不鲜。如果数据的获取没有规则边界,那么就只剩下“裸奔”的利益。媒体多次披露,互联网上的个人信息贩卖已经形成黑色利益链。
内幕触目惊心。商业机构在“盗取”公众个人信息后,常常又以投其所好的方式出现在消费者面前。许多消费者只是觉得越来越方便,而很难意识到这种“贴心”服务是建立在自己信息被泄露基础之上。“我们需要越来越多的数据来满足无止境的欲望,然而我们还从未公开探讨哪些个人信息可以被收集以及如何被利用”。事实上,“信息收集和挖掘技术已经远远超出政府的能力范围,以致难以深思熟虑地通过一项兼顾商业和隐私保护的法律。正因如此,商业公司不知道它不可以做什么,而民众也没有得到保护”。
两位作者郑重指出,在大数据漫天飞舞的今天,只要我们使用手机、电脑、身份证、护照、社保卡、车载卫星定位等,个人信息就一定存在泄露风险。就此,本书从日常生活角度逐一提供技术防范举措。当然,这些举措未必一定确保个人信息的万无一失,但至少可以加上一道密级更高的锁,大大提升泄密的难度。
值得警醒的是,紧步商业机构后尘,一些国家的公共机构亦借大数据技术之利对公民信息“巧取豪夺”。《大数据时代》作者舍恩伯格曾称,“信任是大数据可持续发展的 货币 ”。这里的信任其实应加上引号,因为大多数数据的采集并没有经过被采集者的同意或者授权。2013年,美国中央情报局技术分析员斯诺登向英国《卫报》和美国《华盛顿邮报》泄露了美国国家安全局和联邦调查局启动的一个代号为“棱镜”的秘密监控项目,这也就是至今仍在发酵的“棱镜门”事件。根据斯诺登披露的文件,美国国家安全局可以接触到大量个人聊天日志、存储的数据、语音通信、文件传输、个人社交网络数据。
现实尚且如此,那是否意味,在可预见的未来,随着可穿戴技术和眼球捕捉技术等高科技的突飞猛进,届时无所不在的数据采集会否更令公众束手无策呢?有一点或无疑问,相较而言,今天的数据采集还显得粗放原始。这也就是说,虽然困难很大,从现在开始改进保护个人信息法律,这远比坐等日后数据采集更加泛滥时再纠偏更为容易。想必这也是本书两位作者的良苦用心所在。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21