基于大数据的新一代城市交通一体化解决方案
当你在手机上的公交App里查询112路还有几站到时,是否觉得这不过就是公交车装上GPS的事儿?当你下班路上在百度/高德看着满城的红色“沦陷区”一筹莫展时,可有抱怨过地图App只能提示拥堵,却并不能解决拥堵?当你在赶往机场的路上被一路红灯道道阻拦、急火攻心时,可曾想过为什么信号灯偏偏跟你过不去?
在对于无人驾驶的畅想中,解决交通拥堵,减少浪费在路上的无谓时间是很多人的美好期待(据2016年数据,北京市工作日平均每天堵车约3个小时)。然而,然而车与车之间的数据共享与时时“沟通”目前看来仍然遥不可及,受限于无线通信标准、车厂合作、政府监管等原因,“车联网”在短期内仍然难以实现。更为棘手的是,司机经常会违背或忽略交通规则,而无人车与行人之间的意识“沟通”仍然是天方夜谭。
既然短时间内无法寄希望于无人驾驶将“堵车”问题一劳永逸地解决,那么目前的智能交通系统能够做些什么?如何在“车辆网”尚未实现的情况下实现车流的控制,交通的疏导?大数据、深度学习又能在其中发挥什么样的作用?
“一座城市每天会产生数千万的海量交通数据,但这些数据以前大多数只能‘沉睡’,不能为人所用。”作为中国智能交通领域连续八年的“隐形冠军”,海信网络科技董事长周厚健认为,目前基于GPS、摄像头、超声波雷达、横断面雷达、地磁感应器等“外部监控网络”形成的天罗地网,已经可以产生足够的数据,来帮助实现“交通交响曲”的宏观指挥。
目前的问题在于,这些数据并未被充分挖掘和利用。
“我们不是去告诉大家哪里拥堵哪里不堵,而是要解决怎样把拥堵变成不堵。”按照周厚健的说法,智能交通解决方案就是通过合理的车流调配,让拥堵的地方松驰一些,让闲置的地方密集一些。通过交通管控平台,给出卡口及红绿灯信号,引导车流流向。
比如,如何借助智能交通系统尽可能实现“一路绿灯”?海信的信号控制专家马晓龙给出了基于人工智能技术的解决方案。通过深度学习模型,以数据大脑为核心,实时监控分析道路车流量,依据动态的交通数据,自动切换和调配信号灯时间,最直观的变化是红绿灯的时间不再固定,甚至全程绿灯不停车。
在海信自适应信号控制系统下,按推荐速度行驶,就可以实现“一路绿灯”。在南昌,15条绿波控制的路段,协调控制方向的行程时间平均减少30%以上,车速平均提高40%以上,交通流量提高15%以上。在青岛,智能交通系统的建设完成让高峰持续时间下降1.48小时,平均速度提高比例提高9.71%。
再比如,如何实现交通堵塞问题的快速疏导?以往对于交通堵塞问题,往往是发生拥堵后十多分钟,交警才收到报警,部署警力前往现场疏导。不仅反应过程长,而且容易导致拥堵加剧和潜在安全事故。
海信建立起基于深度学习的交通预测,“以海量交通数据为基础,分析交通运行的规律性和相似性,建立智能学习模型,通过深度学习去预测流量等交通参数,预知拥堵区域等”。就可以预测拥堵地区和时间,提前进行方案制定、信号调配、诱导信息发布以及警力的部署。
这一切都建立在海信研发的“数据魔方”之上,基于深度学习的交通预测,可在30秒内完成10亿规模交通大数据的可视化分析。
十几年时间里,基于对城市交通数据的持续研究,海信率先提出了基于大数据的新一代城市交通一体化解决方案并不断优化。在全国39个省会城市和计划单列市中,海信的智能交通解决方案已应用于其中28个。
2012到2015年,国内亿元以上的智能交通大项目海信的中标额占比42%,并直接把相关产品的价格拉下2/3。海信的智能交通方案,包括智能调度公交车、智能红绿灯、对突发拥堵进行超前检测等,已经服务国内100多个城市。
在成都,海信将13000多辆公交车接入到智能公交调度系统中,实现全国首例1万台以上公交接入。智能公交调度系统实施后,乘客平均候车时间下降40%,月均投诉下降20%,同时,月均事故下降47%,超速违规行为下降97%。
今年两会期间,在回答媒体追问“是否可以解决像北京这样的大城市拥堵问题”时,身为人大代表周厚健自信地回答: 能! 并“希望北京给海信智能交通一个机会”。周厚健的回答之所以如此充满底气,是因为无论是北京奥运村区域的智能交通管理系统,还是朝阳路、安定路的快速公交系统,都是海信网络参与搭建的。
你也可能会好奇做家电的海信何以成为了智能交通行业的领头羊?实际上,出走家电红海的海信悄然之间已经成为了很多细分领域的“隐形冠军”。目前,海信智能交通成为全国第一,光通信全球第五、接入份额第一,商用空调已位列国内第二。周厚健透露,B2B业务目前已近占海信集团利润的近四成。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21