SPSS统计基础---信度分析
可靠性分析允许您研究测量尺度的属性以及组成这些标度的项。“可靠性分析”过程计算标度可靠性的众多常用度量,还提供关于标度中的各项之间关系的信息。类内相关系数可用来计算评分者间的可靠性估计。
示例。我的调查表能以有用的方式度量客户满意度吗?使用可靠性分析,您可以确定调查表中各项的相互关联程度,可以获取重复性的总体指标或作为一个整体的标度的内部一致性,并且可以识别应从标度中排除的问题项。
统计量。每个变量和标度的描述、跨项的摘要统计量、项之间的相关性和协方差、可靠性估计、ANOVA 表、类内相关系数、Hotelling T2 以及Tukey 的可加性检验。
模型。以下可靠性模型可用:
Alpha (Cronbach)。此模型是内部一致性模型,基于平均的项之间的相关性。
半分。此模型将标度分割成两个部分,并检查两部分之间的相关性。
Guttman。此模型计算Guttman 的下界以获取真实可靠性。
平行。此模型假设所有项具有相等的方差,并且重复项之间具有相等的误差方差。
严格平行。此模型假设为平行模型,还假设所有项具有相等的均值。
数据。数据可以是二分数据、有序数据或区间数据,但数据应是用数值编码的。
假设。观察值应是独立的,且项与项之间的误差应是不相关的。每对项应具有二元正态分布。标度应是可加的,以便每一项都与总得分线性相关。
相关过程。如果想要探索标度项的维数(以查明是否需要多个结构来代表项得分的模式),则使用因子分析或多维尺度。要标识同类变量组,可使用系统聚类分析以使变量聚类。
获取可靠性分析
从菜单中选择:
分析> 尺度> 可靠性分析
可靠性分析统计量
Alpha 模型。系数alpha;对于二分数据,它等同于Kuder-Richardson 20 (KR20)系数。
半分模型。形式之间的相关性、Guttman 半分可靠性、Spearman-Brown 可靠性(相等长度和不相等长度)以及每一半的alpha 系数。
Guttman 模型。可靠性系数lambda 1 到lambda 6。
平行和严格平行模型。模型拟合优度检验;误差方差的估计值、公共方差和真实方差;估计的公共项间相关性;估计的可靠性以及可靠性的无偏估计。
描述性。为跨个案的标度或项生成描述统计。
项。为跨个案的项生成描述统计。
标度。为标度生成描述统计。
标度(如果项已删除)。显示将每一项与由其他项组成的标度进行比较时的摘要统计量。这些统计量包括:该项从标度中删除时的标度均值和方差、该项与由其他项组成的标度之间的相关性,以及该项从标度中删除时的Cronbach alpha 值。
摘要。提供跨标度中所有项的项分布的描述统计。
均值. 项均值的摘要统计量。显示项均值的最小、最大和平均值,项均值的范围和方差,以及最大项均值与最小项均值的比。
方差. 项方差的摘要统计量。显示项方差的最小、最大和平均值,项方差的范围和方差,以及最大项方差与最小项方差的比。
协方差. 项间协方差的摘要统计量。显示项之间的协方差的最小、最大和平均值,项之间的协方差的范围和方差,以及最大项之间协方差与最小项之间的协方差的比。
相关性. 项之间的相关性的摘要统计量。显示项之间的相关性的最小、最大和平均值,项间相关性的范围和方差,以及最大项之间的相关性与最小项之间的相关性的比。
项之间。生成项与项之间的相关矩阵或协方差矩阵。
ANOVA 表。生成相等均值的检验。
F 检验. 显示重复度量方差分析表。
Friedman 卡方. 显示Friedman 的卡方Kendall 的协同系数。此选项适用于以秩为形式的数据。卡方检验在ANOVA 表中替换通常的F 检验。
Cochran 卡方. 显示Cochrans Q。此选项适用于双分支。Q 统计在ANOVA 表中替换通常的F 统计。
Hotelling 的T 平方。生成以下原假设的多变量检验:标度上的所有项具有相同的均值。
Tukey 的可加性检验。生成以下假设的检验:项中不存在可乘交互关系。
类内相关系数。生成个案内值的一致性或符合度的测量。
模型。选择用于计算类内相关系数的模型。可用的模型为双向混合、双向随机和单向随机。当人为影响是随机的,而项的作用固定时,选择双向混合;当人为影响和项的作用均为随机时选择双向随机。当人为影响随机时选择单向随机。
类型。选择指标类型。可用的类型为“一致”和“绝对一致”。
置信区间。指定置信区间的置信度。缺省值为95%。
检验值。指定假设检验系数的假设值。该值是用来与观察值进行比较的值。缺省值为0。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21