京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这篇文章主要介绍了Python基于numpy灵活定义神经网络结构的方法,结合实例形式分析了神经网络结构的原理及Python具体实现方法,涉及Python使用numpy扩展进行数学运算的相关操作技巧,需要的朋友可以参考下
本文实例讲述了Python基于numpy灵活定义神经网络结构的方法。分享给大家供大家参考,具体如下:
用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!
一、用法
1). 定义一个三层神经网络:

说明:
输入层节点数目:3
隐藏层节点数目:4
输出层节点数目:2
2).定义一个五层神经网络:
'''示例二'''
nn = NeuralNetworks([3,5,7,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测
说明:
输入层节点数目:3
隐藏层1节点数目:5
隐藏层2节点数目:7
隐藏层3节点数目:4
输出层节点数目:2
二、实现
如下实现方式为本人(@hhh5460)原创。 要点: dtype=object
import numpy as np
class NeuralNetworks(object):
''''''
def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
'''搭建神经网络框架'''
# 各层节点数目 (向量)
self.n = np.array(n_layers) # 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
self.size = self.n.size # 层的总数
# 层 (向量)
self.z = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
self.a = np.empty(self.size, dtype=object)
self.data_a = np.empty(self.size, dtype=object)
# 偏置 (向量)
self.b = np.empty(self.size, dtype=object)
self.delta_b = np.empty(self.size, dtype=object)
# 权 (矩阵)
self.w = np.empty(self.size, dtype=object)
self.delta_w = np.empty(self.size, dtype=object)
# 填充
for i in range(self.size):
self.a[i] = np.zeros(self.n[i]) # 全零
self.z[i] = np.zeros(self.n[i]) # 全零
self.data_a[i] = np.zeros(self.n[i]) # 全零
if i < self.size - 1:
self.b[i] = np.ones(self.n[i+1]) # 全一
self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
mu, sigma = 0, 0.1 # 均值、方差
self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
下面完整代码是我学习斯坦福机器学习教程,完全自己敲出来的:
import numpy as np
'''
参考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
'''
class NeuralNetworks(object):
''''''
def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
'''搭建神经网络框架'''
self.n_iter = n_iter # 迭代次数
self.error = error # 允许最大误差
self.alpha = alpha # 学习速率
self.lamda = lamda # 衰减因子 # 此处故意拼写错误!
if n_layers is None:
raise '各层的节点数目必须设置!'
elif not isinstance(n_layers, list):
raise 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
# 节点数目 (向量)
self.n = np.array(n_layers)
self.size = self.n.size # 层的总数
# 层 (向量)
self.a = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
self.z = np.empty(self.size, dtype=object)
# 偏置 (向量)
self.b = np.empty(self.size, dtype=object)
self.delta_b = np.empty(self.size, dtype=object)
# 权 (矩阵)
self.w = np.empty(self.size, dtype=object)
self.delta_w = np.empty(self.size, dtype=object)
# 残差 (向量)
self.data_a = np.empty(self.size, dtype=object)
# 填充
for i in range(self.size):
self.a[i] = np.zeros(self.n[i]) # 全零
self.z[i] = np.zeros(self.n[i]) # 全零
self.data_a[i] = np.zeros(self.n[i]) # 全零
if i < self.size - 1:
self.b[i] = np.ones(self.n[i+1]) # 全一
self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
mu, sigma = 0, 0.1 # 均值、方差
self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
# 激活函数
self.active_functions = {
'sigmoid': self.sigmoid,
'tanh': self.tanh,
'radb': self.radb,
'line': self.line,
}
# 激活函数的导函数
self.derivative_functions = {
'sigmoid': self.sigmoid_d,
'tanh': self.tanh_d,
'radb': self.radb_d,
'line': self.line_d,
}
if active_type is None:
self.active_type = ['sigmoid'] * (self.size - 1) # 默认激活函数类型
else:
self.active_type = active_type
def sigmoid(self, z):
if np.max(z) > 600:
z[z.argmax()] = 600
return 1.0 / (1.0 + np.exp(-z))
def tanh(self, z):
return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
def radb(self, z):
return np.exp(-z * z)
def line(self, z):
return z
def sigmoid_d(self, z):
return z * (1.0 - z)
def tanh_d(self, z):
return 1.0 - z * z
def radb_d(self, z):
return -2.0 * z * np.exp(-z * z)
def line_d(self, z):
return np.ones(z.size) # 全一
def forward(self, x):
'''正向传播(在线)'''
# 用样本 x 走一遍,刷新所有 z, a
self.a[0] = x
for i in range(self.size - 1):
self.z[i+1] = np.dot(self.a[i], self.w[i]) + self.b[i]
self.a[i+1] = self.active_functions[self.active_type[i]](self.z[i+1]) # 加了激活函数
def err(self, X, Y):
'''误差'''
last = self.size-1
err = 0.0
for x, y in zip(X, Y):
self.forward(x)
err += 0.5 * np.sum((self.a[last] - y)**2)
err /= X.shape[0]
err += sum([np.sum(w) for w in self.w[:last]**2])
return err
def backward(self, y):
'''反向传播(在线)'''
last = self.size - 1
# 用样本 y 走一遍,刷新所有delta_w, delta_b
self.data_a[last] = -(y - self.a[last]) * self.derivative_functions[self.active_type[last-1]](self.z[last]) # 加了激活函数的导函数
for i in range(last-1, 1, -1):
self.data_a[i] = np.dot(self.w[i], self.data_a[i+1]) * self.derivative_functions[self.active_type[i-1]](self.z[i]) # 加了激活函数的导函数
# 计算偏导
p_w = np.outer(self.a[i], self.data_a[i+1]) # 外积!感谢 numpy 的强大!
p_b = self.data_a[i+1]
# 更新 delta_w, delta_w
self.delta_w[i] = self.delta_w[i] + p_w
self.delta_b[i] = self.delta_b[i] + p_b
def update(self, n_samples):
'''更新权重参数'''
last = self.size - 1
for i in range(last):
self.w[i] -= self.alpha * ((1/n_samples) * self.delta_w[i] + self.lamda * self.w[i])
self.b[i] -= self.alpha * ((1/n_samples) * self.delta_b[i])
def fit(self, X, Y):
'''拟合'''
for i in range(self.n_iter):
# 用所有样本,依次
for x, y in zip(X, Y):
self.forward(x) # 前向,更新 a, z;
self.backward(y) # 后向,更新 delta_w, delta_b
# 然后,更新 w, b
self.update(len(X))
# 计算误差
err = self.err(X, Y)
if err < self.error:
break
# 整千次显示误差(否则太无聊!)
if i % 1000 == 0:
print('iter: {}, error: {}'.format(i, err))
def predict(self, X):
'''预测'''
last = self.size - 1
res = []
for x in X:
self.forward(x)
res.append(self.a[last])
return np.array(res)
if __name__ == '__main__':
nn = NeuralNetworks([2,3,4,3,1], n_iter=5000, alpha=0.4, lamda=0.3, error=0.06) # 定义神经网络
X = np.array([[0.,0.], # 准备数据
[0.,1.],
[1.,0.],
[1.,1.]])
y = np.array([0,1,1,0])
nn.fit(X,y) # 拟合
print(nn.predict(X)) # 预测
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25