京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这篇文章主要介绍了Python基于numpy灵活定义神经网络结构的方法,结合实例形式分析了神经网络结构的原理及Python具体实现方法,涉及Python使用numpy扩展进行数学运算的相关操作技巧,需要的朋友可以参考下
本文实例讲述了Python基于numpy灵活定义神经网络结构的方法。分享给大家供大家参考,具体如下:
用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!
一、用法
1). 定义一个三层神经网络:

说明:
输入层节点数目:3
隐藏层节点数目:4
输出层节点数目:2
2).定义一个五层神经网络:
'''示例二'''
nn = NeuralNetworks([3,5,7,4,2]) # 定义神经网络
nn.fit(X,y) # 拟合
print(nn.predict(X)) #预测
说明:
输入层节点数目:3
隐藏层1节点数目:5
隐藏层2节点数目:7
隐藏层3节点数目:4
输出层节点数目:2
二、实现
如下实现方式为本人(@hhh5460)原创。 要点: dtype=object
import numpy as np
class NeuralNetworks(object):
''''''
def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
'''搭建神经网络框架'''
# 各层节点数目 (向量)
self.n = np.array(n_layers) # 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
self.size = self.n.size # 层的总数
# 层 (向量)
self.z = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
self.a = np.empty(self.size, dtype=object)
self.data_a = np.empty(self.size, dtype=object)
# 偏置 (向量)
self.b = np.empty(self.size, dtype=object)
self.delta_b = np.empty(self.size, dtype=object)
# 权 (矩阵)
self.w = np.empty(self.size, dtype=object)
self.delta_w = np.empty(self.size, dtype=object)
# 填充
for i in range(self.size):
self.a[i] = np.zeros(self.n[i]) # 全零
self.z[i] = np.zeros(self.n[i]) # 全零
self.data_a[i] = np.zeros(self.n[i]) # 全零
if i < self.size - 1:
self.b[i] = np.ones(self.n[i+1]) # 全一
self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
mu, sigma = 0, 0.1 # 均值、方差
self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
下面完整代码是我学习斯坦福机器学习教程,完全自己敲出来的:
import numpy as np
'''
参考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
'''
class NeuralNetworks(object):
''''''
def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
'''搭建神经网络框架'''
self.n_iter = n_iter # 迭代次数
self.error = error # 允许最大误差
self.alpha = alpha # 学习速率
self.lamda = lamda # 衰减因子 # 此处故意拼写错误!
if n_layers is None:
raise '各层的节点数目必须设置!'
elif not isinstance(n_layers, list):
raise 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
# 节点数目 (向量)
self.n = np.array(n_layers)
self.size = self.n.size # 层的总数
# 层 (向量)
self.a = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
self.z = np.empty(self.size, dtype=object)
# 偏置 (向量)
self.b = np.empty(self.size, dtype=object)
self.delta_b = np.empty(self.size, dtype=object)
# 权 (矩阵)
self.w = np.empty(self.size, dtype=object)
self.delta_w = np.empty(self.size, dtype=object)
# 残差 (向量)
self.data_a = np.empty(self.size, dtype=object)
# 填充
for i in range(self.size):
self.a[i] = np.zeros(self.n[i]) # 全零
self.z[i] = np.zeros(self.n[i]) # 全零
self.data_a[i] = np.zeros(self.n[i]) # 全零
if i < self.size - 1:
self.b[i] = np.ones(self.n[i+1]) # 全一
self.delta_b[i] = np.zeros(self.n[i+1]) # 全零
mu, sigma = 0, 0.1 # 均值、方差
self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化
self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
# 激活函数
self.active_functions = {
'sigmoid': self.sigmoid,
'tanh': self.tanh,
'radb': self.radb,
'line': self.line,
}
# 激活函数的导函数
self.derivative_functions = {
'sigmoid': self.sigmoid_d,
'tanh': self.tanh_d,
'radb': self.radb_d,
'line': self.line_d,
}
if active_type is None:
self.active_type = ['sigmoid'] * (self.size - 1) # 默认激活函数类型
else:
self.active_type = active_type
def sigmoid(self, z):
if np.max(z) > 600:
z[z.argmax()] = 600
return 1.0 / (1.0 + np.exp(-z))
def tanh(self, z):
return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
def radb(self, z):
return np.exp(-z * z)
def line(self, z):
return z
def sigmoid_d(self, z):
return z * (1.0 - z)
def tanh_d(self, z):
return 1.0 - z * z
def radb_d(self, z):
return -2.0 * z * np.exp(-z * z)
def line_d(self, z):
return np.ones(z.size) # 全一
def forward(self, x):
'''正向传播(在线)'''
# 用样本 x 走一遍,刷新所有 z, a
self.a[0] = x
for i in range(self.size - 1):
self.z[i+1] = np.dot(self.a[i], self.w[i]) + self.b[i]
self.a[i+1] = self.active_functions[self.active_type[i]](self.z[i+1]) # 加了激活函数
def err(self, X, Y):
'''误差'''
last = self.size-1
err = 0.0
for x, y in zip(X, Y):
self.forward(x)
err += 0.5 * np.sum((self.a[last] - y)**2)
err /= X.shape[0]
err += sum([np.sum(w) for w in self.w[:last]**2])
return err
def backward(self, y):
'''反向传播(在线)'''
last = self.size - 1
# 用样本 y 走一遍,刷新所有delta_w, delta_b
self.data_a[last] = -(y - self.a[last]) * self.derivative_functions[self.active_type[last-1]](self.z[last]) # 加了激活函数的导函数
for i in range(last-1, 1, -1):
self.data_a[i] = np.dot(self.w[i], self.data_a[i+1]) * self.derivative_functions[self.active_type[i-1]](self.z[i]) # 加了激活函数的导函数
# 计算偏导
p_w = np.outer(self.a[i], self.data_a[i+1]) # 外积!感谢 numpy 的强大!
p_b = self.data_a[i+1]
# 更新 delta_w, delta_w
self.delta_w[i] = self.delta_w[i] + p_w
self.delta_b[i] = self.delta_b[i] + p_b
def update(self, n_samples):
'''更新权重参数'''
last = self.size - 1
for i in range(last):
self.w[i] -= self.alpha * ((1/n_samples) * self.delta_w[i] + self.lamda * self.w[i])
self.b[i] -= self.alpha * ((1/n_samples) * self.delta_b[i])
def fit(self, X, Y):
'''拟合'''
for i in range(self.n_iter):
# 用所有样本,依次
for x, y in zip(X, Y):
self.forward(x) # 前向,更新 a, z;
self.backward(y) # 后向,更新 delta_w, delta_b
# 然后,更新 w, b
self.update(len(X))
# 计算误差
err = self.err(X, Y)
if err < self.error:
break
# 整千次显示误差(否则太无聊!)
if i % 1000 == 0:
print('iter: {}, error: {}'.format(i, err))
def predict(self, X):
'''预测'''
last = self.size - 1
res = []
for x in X:
self.forward(x)
res.append(self.a[last])
return np.array(res)
if __name__ == '__main__':
nn = NeuralNetworks([2,3,4,3,1], n_iter=5000, alpha=0.4, lamda=0.3, error=0.06) # 定义神经网络
X = np.array([[0.,0.], # 准备数据
[0.,1.],
[1.,0.],
[1.,1.]])
y = np.array([0,1,1,0])
nn.fit(X,y) # 拟合
print(nn.predict(X)) # 预测
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23