SPSS数据分析—t检验
SPSS中t检验全都集中在分析—比较均值菜单中。关于t检验再简单说一下,我们知道一个统计结果需要表达三部分内容,即集中性、变异性、显著性。
集中性的表现指标是均值
变异的的表现指标是方差、标准差或标准误
显著性的则是根据统计量判断是否达到显著性水平
由于t分布样本均值的抽样分布,那么基于t分布的t检验就是样本均值的检验,是对均值差异的显著性检验。
t检验可以在以下三种分析中使用
1.样本均数与总体均数的差异性分析(单样本t检验)
2.配对设计样本均数或两非独立两样本均数差异性分析(配对t检验)
3.两独立样本均数差异性分析(独立样本t检验)
==============================================
一、分析—比较均值—单样本T检验
单样本T检验用来分析样本均值与总体均值的差异,以此来判断这个样本来自总体的均值是否等于(大于或小于)某个已知总体的均值,适用条件是样本数据分布呈正态分布,小样本情况下需要检验,大样本情况下近似正态,该方法比较稳健,只要不是严重偏态都可以使用。
二、分析—比较均值—配对样本T检验
当配对设计的数据为连续变量时,可以使用配对T检验,配对T检验认为如果两种处理实际上没有差异,则每对数据的差值的总体均值应该为0,实际上就是已知均值为0的单样本T检验,因此适用条件也和单样本T检验一样。
三、分析—比较均值—独立样本T检验
和配对设计相对应,独立样本t检验是针对成组设计,数据资料被分为两组,也就是两个样本,它们之间是相互独立的,检验的目的是判断这两个样本来自的总体均值是否存在差异。由于涉及到两个总体,而每个总体的离散程度即方差也不一定相同,因此需要先对两样本的方差齐性做出检验,并且根据结果分为方差相同和方差不同两种算法。
独立样本t检验和配对样本t检验的区别:
1.独立样本t检验用于检验两个独立样本是否来自具有相同均值的总体,也就是检验两个正态分布的总体均值是否相等。配对样本t检验用于检验两个相关样本是否来自具有相同均值的正态总体,也就是检验两相关样本的差值的均值和零均值之间的差异显著性
2.独立样本是指不同样本均值的比较,配对样本是相同样本均值的比较,例如同一个体的两次测量,如果分为实验组和对照组,那么就应该是独立样本。
3.独立样本重点在于独立,即两样本个体之间不存在相关关系。而配对样本重点在于相关,样本个体之间存在相关关系,或者干脆就是同一个体。这种相关关系会导致变异的传递,如果直接忽略的话,会严重影响结果的准确性。因此,虽然表面上看两种检验的假设是类似的,都是两均值之差=0,但是正因为相关性的存在,使得实际包含的含义却不同。举例说明,观测到服药前后的体重变化,属于配对设计,由于各个观察对象在服药前的体重不全相同,所以其体重含有服药前的体重个体变异成分,而在服药后,各个观察对象的体重下降幅度也不全相同,故存在体重下降幅度的个体变异成分,因此观察对象在服药后的体重中不仅含有体重下降幅度的个体变异成分,而且还含有服药前的体重个体变异成分,故服药前后的体重资料不独立。对于这种不独立资料的统计分析一般采用变异成分的分解或消除某一个体变异成分的方法进行统计处理的,配对t检验就是采用服药前后资料相减作为统计分析数据,因而消除了服药前体重的个体变异,使进入统计分析的资料仅含有体重下降幅度的个体变异。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21