当今世界上在大数据领域最具话语权的企业
本文整理了当今世界上在大数据领域最具话语权的企业,特别是活跃在中国市场上的企业,它们有的是计算机或者互联网领域的巨头,有的是刚刚创办不久的初创企业。但它们有一个共同点,那就是它们都看到了大数据带来的大机会,于是毫不犹豫地挺进了这个领域。
传统巨头:
一、企业名称:IBM
公司地址:美国纽约州阿蒙克市
融资状况:IBM业务
业务方向:主要面向大企业等市场
IBM这个蓝色巨人现如今虽已经没有上世纪名号响亮,但是在如今企业市场的各个领域却具有无可争议的话语权,自然它也不会放过大数据这块肥肉,现在它是全球最大的信息技术和业务解决方案公司。
2011年5月,IBM正式推出InfoSphere大数据分析平台。InfoSphere大数据分析平台包括 BigInsights和Streams,二者互补,Biglnsights基于Hadoop,对大规模的静态数据进行分析,它提供多节点的分布式计算,可以随时增加节点,提升数据处理能力。Streams采用内存计算方式分析实时数据。InfoSphere大数据分析平台还集成了数据仓库、数据库、数据集成、业务流程管理等组件。
二、企业名称:亚马逊
公司地址:美国华盛顿州西雅图
融资状况:亚马逊业务
业务方向:主要面向大企业等市场
对于云计算和大数据,亚马逊绝对具有先见之明,早在2009年就推出了亚马逊弹性MapReduce(Amazon Elastic MapReduce),亚马逊对Hadoop的需求和应用可谓了若指掌,无论是中小型企业还是大型组织。弹性MapReduce是一项能够迅速扩展的Web服务,运行在亚马逊弹性计算云(Amazon EC2)和亚马逊简单存储服务(Amazon S3)上。这可是货真价实的云:面对数据密集型任务,比如互联网索引、数据挖掘、日志文件分析、机器学习、金融分析、科学模拟和生物信息学研究,用户需要多大容量,立即就能配置到多大容量。
除了数据处理外,用户还可以使用Karmasphere Analyst的基于服务的版本,Karmasphere Analyst是一种可视化工作区,用于在亚马逊弹性MapReduce上分析数据。用户还可以提取结果文件,以便在数据库或者微软Excel或Tableau等工具中使用。
三、企业名称:甲骨文
公司地址:美国加州红木城
融资状况:甲骨文业务
业务方向:主要面向大企业等市场
甲骨文在近期发布的Oracle大数据机(Oracle Big Data Appliance)为许多企业提供了一种处理海量非结构化数据的方法。在2011年10月初召开的Oracle OpenWorld 2011大会上甲骨文正式推出了Oracle大数据机。对于那些正在寻求以更高效的方法来采集、组织和分析海量非结构化数据的企业而言,该产品具有很大的吸引力。
与甲骨文近期推出的其他一体化产品一样,Oracle大数据机集成了硬件、存储和软件,包括Apache Hadoop软件的开源代码分发、新的甲骨文NoSQL数据库和用于统计分析的R语言开源代码分发。该产品被设计为能够与甲骨文Database 11g、Oracle Exadata数据库云服务器,以及针对商业智能应用的新的Oracle Exalytics商业智能云服务器一起协同工作。
四、企业名称:谷歌
公司地址:美国加州山景城
融资状况:谷歌业务
业务方向:面向各类企业市场
谷歌一直是科技行业的领军者,近年来几乎在任何一项互联网科技项目你都能看到谷歌的身影,大数据时代谷歌自然不会错过。何况如果对其拥有的海量数据进行深入挖掘,这对于提升谷歌搜索乃至所有谷歌服务的价值无可估量。
BigQuery是Google推出的一项Web服务,用来在云端处理大数据。该服务让开发者可以使用Google的架构来运行SQL语句对超级大的数据库进行操作。 BigQuery允许用户上传他们的超大量数据并通过其直接进行交互式分析,从而不必投资建立自己的数据中心。Google曾表示BigQuery引擎可 以快速扫描高达70TB未经压缩处理的数据,并且可马上得到分析结果。大数据在云端模型具备很多优势,BigQuery服务无需组织提供或建立数据仓库。而BigQuery在安全性和数据备份服务也相当完善。
去年底该服务只向一小部分开发者开放,现在任何人都可以注册这项服务。免费帐号可以让你每月访问高达100GB的数据,你也可以付费使用额外查询和存储空间。
五、企业名称:微软
公司地址:美国华盛顿州雷德蒙市
融资状况:微软业务
业务方向:面向各类企业市场
微软研究部门从2006年起就一直致力于某种非常类似于Hadoop的项目,被称为“Dryad”。今年年初,该计划通过与SQL Server和Windows Azure云的集成实现了Dryad的产品化。虽然现在微软还没有更新,但看上去Dryad似乎将成为在SQL Server平台上影响大数据爱好者的有力竞争者。
微软进入这一市场可谓“姗姗来迟”,而且在一定程度上说,数据仓库分析和内存分析计算市场落下了后腿。2011年初微软发布的SQL Server R2 Parallel Data Warehouse(PDW,并行数据仓库),PDW使用了大规模并行处理来支持高扩展性,它可以帮助客户扩展部署数百TB级别数据的分析解决方案。微软目前已经开始提供Hadoop Connector for SQL Server Parallel Data Warehouse和Hadoop Connector for SQL Server社区技术预览版本的连接器。 该连接器是双向的,你可以在Hadoop和微软数据库服务器之间向前或者向后迁移数据。
微软在去年推出了基于Azure云平台的测试版Hadoop服务,今年它承诺会推出与Windows兼容的基于Hadoop的大数据解决方案(Big Data Solution),这是微软SQL Server 2012版本(首发日期还不知道)的一部分,现在也不清楚微软是否会与其他硬件合作伙伴或者相关大数据设备厂商合作。
六、企业名称:EMC
上线时间:不详
公司地址:美国麻州Hopkinton市
融资状况:EMC业务
业务方向:面向各类企业市场
EMC于1979年成立于美国麻州Hopkinton市,1989年开始进入企业数据储存市场。 EMC公司是全球信息存储及管理产品、服务和解决方案方面的领先公司。EMC是每一种主要计算平台的信息存储标准,而且,世界上最重要信息中的 2/3 以上都是通过EMC的解决方案管理的。
面对大数据时代,EMC公司推出用于支持大数据分析的下一代平台――EMC Greenplum统一分析平台(UAP).
Greenplum UAP是一个唯一的统一数据分析平台,可扩展至其他工具,其独特之处在于,它将对大数据的认知和分享贯穿整个分析过程,实现比以往更高的商业价值。
七、企业名称:Teradata
公司地址:美国俄亥俄州迈阿密斯堡
融资状况:Teradata业务
业务方向:面向各类企业市场
Teradata公司(Teradata Corporation,纽约证券交易所交易代码TDC)是全球领先的数据仓库,大数据分析和整合营销管理解决方案供应商,专注于数据库软件,数据仓库专用平台及企业分析方案。 不久前宣布推出一款集硬件、软件和服务于一体的全面产品组合——Teradata分析生态系统 (Teradata Analytical Ecosystem),使不同的 Teradata 系统实现无缝协作,为企业客户提供分析和更深入的洞察力,帮助其预测商业机会和加速实现商业价值。Teradata Unity 将确保整个Teradata Analytical Ecosystem的同步和统一。为了增强在大数据分析领域的优势, Teradata还收购Aster Data公司,以增强其非传统数据分析的能力,突破了SQL分析的限制,协助企业从全部数据中获取更多价值。
八、企业名称:惠普
公司地址:美国加州帕罗奥多市
融资状况:惠普业务
业务方向:面向各类企业市场
大数据时代来临,老牌巨头惠普也不甘落后。不久前惠普企业服务事业部宣布推出全新服务,帮助客户更快部署惠普子公司Vertica的Vertica Analytics Platform ,从而迅速洞悉关键的业务信息,辅助决策过程。
Vertica Analytics Platform 让用户能够大规模实时分析物理、虚拟和云环境中的结构化、半结构化和非结构化数据,从而深入洞悉“大数据”。
Advanced Information Services for Vertica 帮助客户最大化实现 Vertica 分析平台性能,并构建企业分析专用环境。惠普提供从评估到实施的一系列服务,与客户共同定义多种交付方式组合,并找出匹配其现有基础设施的最佳解决方案。
Advanced Information Services for Vertica已在全球上市,将为实现“瞬捷”企业构建灵活的智能环境。
九、企业名称:沃尔玛
公司地址:本顿维尔
融资状况:沃尔玛业务
业务方向:未知
在这里看到沃尔玛的身影,可能很多人会有疑问,全球最大的传统零售业巨头沃尔玛怎么就跟大数据扯上关系了?看了下面的介绍你就会明白了。
沃尔玛是最早通过利用大数据而受益的企业之一,曾经拥有世界上最大的数据仓库系统。通过对消费者的购物行为等非结构化数据进行分析,沃尔玛成为最了解顾客购物习惯的零售商,并创造了“啤酒与尿布”的经典商业案例。早在2007年,沃尔玛就已建立了一个超大的数据中心,其存储能力高达4Pb以上。《经济学人》在2010年的一篇报道中指出,沃尔玛的数据量已经是美国国会图书馆的167倍。
沃尔玛实验室计划将沃尔玛的10个不同的网站整合成一个,同时将一个10个节点的Hadoop集群扩展到250个节点的Hadoop集群。目前实验室正在设计几个能将当前像Oracle、Neteeza这样的开放资源的数据库进行迁移、整合的工具。
沃尔玛曾进行了一些列的收购,包括Kosmix(沃尔玛实验室前身)、Small Society、Set Direction、OneRiot、Social Calenda、Grabble等多家中小型创业公司,这些创业公司要么精于数据挖掘和各种算法,要么在移动社交领域有其专长,从此我们就可以看出沃尔玛进军移动互联网和挖掘大数据的决心。相信在沃尔玛的带领下,传统行业也会慢慢意识到大数据的重要性,加速步入大数据时代。
十、企业名称:Cloudera
公司地址:美国加州帕洛阿尔托
融资状况:4000万美元
业务方向:面向各类企业市场等
Cloudera是一家专业从事基于Apache Hadoop的数据管理软件销售和服务的公司,总部位于加州帕洛阿尔托,2009年3月发布了第一款商业产品,当时获得由AccelPartners领投的500万美元投资。该公司于2010年6月正式推出Cloudera企业产品。 2011年11月募集到4000万美元风险投资资金,此轮融资由风险投资机构Ignition Partners的合伙人弗兰克•阿泰勒(Frank Artale)领投。Cloudera之前的投资者顶尖风投机构Accel Partners、Greylock Partners、Meritech Capital Partners 和In-Q-Tel也参与本轮投资。
除以上企业以外,包括MapR、HStreaming、Hadapt、DataStax、Datameer这些与Hadoop以及大数据相关的新公司都已经获得投资,新一轮热潮正在兴起。
十一、企业名称:星环科技
公司地址:中国上海
融资状况:1000万美元
业务方向:大数据基础架构和软件
Transwarp Data Hub(简称TDH)是国内落地案例最多的一站式Hadoop发行版, 是国内外领先的大数据基础软件,比开源Hadoop2版本快10倍到100倍。TDH应用范围覆盖各种规模和不同数据量的企业。通过内存计算、高效索引、执行优化和高度容错的技术,使得一个平台能够处理10GB到100PB的数据,并且在每个数量级上都能比现有技术提供更快的性能;企业客户不再需要混合架构,TDH可以伴随企业客户的数据增长, 动态不停机扩容,避免MPP或混合架构数据迁移的棘手问题。
Transwarp Data Hub 包含四大产品:
• Transwarp Hadoop 企业版
• Transwarp Inceptor 分布式内存分析引擎
• Transwarp Hyperbase 分布式实时在线处理引擎
• Transwarp Stream 流处理引擎
十二、企业名称:Splunk 盛庞卡
公司地址:美国旧金山
融资状况:已上市
业务方向:大数据解决方案
Splunk总部于2004年在美国旧金山成立,2006年第一个产品发布,2012 IPO上市,是大数据业内第一个上市的企业。具有颠覆性的技术和产品,通过对大数据快速精准的分析能力,为客户带来巨大的商业价值,是Splunk成功的关键所在。10年的快速发展,如今已成为大数据领域的领军者。Splunk利用大数据思想和分析能力,在多个领域帮助用户得到优化的解决方案。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21