京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS科研统计:数据的排序、拆分与合并
通常在进行统计分析之前,可能要对数据文件进行基本的处理操作,让数据格式更加适合用于将要用到的统计分析方法。数据文件的基本操作主要包括数据的排序、数据的分组、数据的合并、数据的转置、对变量值的求秩、对变量的编码、计算新变量、数据的汇总与加权。整理数据文件的功能主要通过“数据”菜单和“转换”菜单来完成。
一、数据的排序
一般我们创建的数据文件在编辑窗口中个案的前后次序是随机的,其先后顺序由录入时决定。在做数据统计分析时,有时希望按某种顺序来观察一批数据,以便于更好地了解数据信息。例如:多城市儿童身高,希望身高是按从高到低的顺序观察。SPSS中的数据排序就是将数据编辑窗口中的数据,按照指定的某一个或多个变量值的升序或降序重新排列,所指定的变量称为排序变量。当排序变量只有一个时,为单值排序,则按照排序变量取值的大小次序对个案数据重新整理后显示。当排序变量有多个时,为多重排序。多重排序的第一个排序变量称为主排序变量,其他排序变量依次称为第二排序变量、第三排序变量等。在多重排序时,个案先按主排序变量值的大小排序,当主排序变量值一致时,再按第二排序变量值大小排序,依次类推。数据排序的主要操作方法如下:
单击“数据” |“排序个案”命令,弹出“排序个案“对话框,排序前数据如下图所示。将排序变量选定后,设置好排序方式,如排序个案图所示,单击“确定”按钮,会自动 跳转到排序后的数据编辑窗口。
(1) “排序依据”框是选择指定的排序变量,若排序变量有多个,将自动按照它们在此列表的显示次序,依次对数据进行排序。
二、数据的拆分
在进行统计分析时,只需要对具有某种特性的数据进行分析,那么就涉及到分组分析,则可以通过拆分数据集来加以实现,它能使数据分析过程按照分组变量进行分组分析,得到各个组的结果。通过拆分功能,还可以实现对原始数据的重新排序,使某一变量取值相同的个案集中在一起,便于观察和比较。具体的操作方法如下:
单击“数据”丨“拆分文件”命令,弹出“分割文件”对话框
(1) “分组方式”框用于选择拆分的变量,此变量可以是一种及以上。
(2) 指定拆分方式。
分析所有个案,不创建组:是系统的默认值,表示分析所有的个案,取消拆分,它可恢复分组前的状态;
比较组:分组分析,按组间比较的形式输出结果;
按组组织输出:分组分析,分别显示各组所得的结果。
(3) 指定排序方式。
按分组变量排序文件:拆分时将数据按所用的拆分变量排序,这是系统默认选项;
文件已排序:标识数据己经按分组变量排序了,不需要重新排序。
拆分前数据
数据拆分的参数设置
选中拆分变量后,单击“确定”按钮,自动弹出拆分后的数据编辑窗口,如上图所示。右下侧会出现“拆分条件”的提示,表明所做的拆分正在生效,它将在以后的分析中一直有效,而且会被存储在数据集中,直到再次进行设定为止。数据进行拆分后,其分析结果的显示表格,如下图所示
拆分后收数据
三、数据的合并
当数据量很大时,经常需要将一份大的数据分成几个小部分,由不同的人对数据进行录入,以提高录入效率。这样就会出现一份大的数据分别存储在几个不同的数据文件中的现象。因此,将这些若干个小的数据文件合并成一个大的数据文件,是进行各种统计分析的前提。SPSS数据文件的合并方式有两种:纵向合并和横向合并。在SPSS系统中,进行合并的文件必须都存储为SPSS数据格式。
(1)纵向合并
纵向合并指的是几个数据集中的数据纵向相加,组成一个新的数据集,新数据集中的记录数是原来几个数据集中记录数的总和,实质就是将两个数据文件的变量列,按照各个变量名的含义,一一对应进行首尾连接合并。合并的两个数据文件的变量相同,合并的目的是增加分析个案。
实现SPSS数据文件的纵向合并应遵循两个条件:第一,两个待合并的SPSS数据文件,其内容合并是有实际意义的;第二,为方便SPSS数据文件的合并,在不同数据文件中,数据含义相同的列,最好起相同的名字,变量类型和变量长度也要尽量相同。这样,将方便SPSS对变量的自动对应和匹配。
(2)横向合并
横向合并指的是按照记录的次序,或者某个关键变量的数值,将不同数据集中的不同变量合并为一个数据集,新数据集中的变量数是所有原数据集中不重名变量的总和,实质就是将两个数据文件的记录,按照记录对应,一一进行左右对接。合并的两个数据文件的变量不同,但具有相同个案例数。
实现SPSS数据文件的横向合并应遵循三个条件,第一,如果不是按照记录号对应的规则进行合并,则两个数据文件必须至少有一个变量名相同的公共变量,这个变量是两个数据文件横向对应合并的依据,称为关键变量。如学号、贵宾卡号等,关键变量可以是多个;第二,如果是使用关键变量进行合并的,则两个数据文件都必须事先按关键变量进行升序排列;第三,为方便SPSS数据文件的合并,在不同数据文件中,数据含义不相同的列,变量名不应取相同的名称。数据合并的操作方法如下:单击“数据”丨“合并文件”丨“添加个案”命令,弹出添加个案文件选择对话框操作即可。
打开数据合并窗口。因是横向合并,所以选择“添加变量”。第二个图片显示合并的数据文件。
“已排除的变量”是两个文件中共同拥有的变量名,选择它作为“关键变量”。“新的活动数据集”是最后展示在结果中的变量名。变量名后的“*”表示当前数据编辑窗口中的量,“+”表示指定文件中的变量。“按照排序文件中的关键变量匹配个案”中通常选择第一个,即“两个文件都提供个案”。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04