SPSS分析技术:含时间依存性自变量的Cox回归分析
在介绍Cox回归模型时,我们提到过Cox回归模型有一个基本假设,就是纳入模型中的自变量不具有时间依存性,也就是自变量对风险函数的影响不随时间的变化而变化,如果违反这条假设,就需要将时间的影响也纳入模型一起考量,这就是具有时间依存变量的Cox回归模型。
模型原理
在进行生存分析时,有些自变量对风险函数(事件发生概率)的影响会随时间的变化而变化,这种现象在医学领域其实非常常见。例如,二次世界大战以后,很多学者研究美国投放在日本广岛和长崎的两颗原子弹的核辐射对日本妇女乳腺癌发生率的影响,其中人们接触到的核辐射量(自变量)会随时间的推移逐渐减低,这个自变量就不符合Cox回归模型的假设,此时应该使用考量时间效应的Cox回归模型。
在上一篇的Cox回归模型文章中,我们已经知道是否术中放疗对风险函数(术后患者的生存时间分布)有显著性影响,术中放疗的患者的平均生命时间比没有术中放疗的患者更长。Cox回归模型又称为比例风险模型,因为它对自变量有假设,要求自变量对风险函数的影响不随时间变化而变化。
在Cox回归模型中,可以通过图形来主观判断自变量是否符合上面的假设,如下图所示,在log minus log图形中,两条生存曲线是几乎平行的,可以帮助分析者判断是否术中放疗对风险函数的影响是符合恒定比例假设的。
先回顾一下Cox回归模型:
具有时间依存自变量的Cox回归模型可以分成两种:第一种是自变量的取值不随时间变化,只是同样的自变量取值对生存时间分布的影响效应变化了,这种自变量称为外在时间依存自变量。模型公式可以表示为:
第二种是情况是自变量的取值随时间的变化而变化,从而使得自变量对生存时间分布的影响发生变化,也就是说该自变量是时间t的因变量,这样的自变量称为内在时间依存自变量,例如文章开头提到的核辐射例子。模型可以表示为:
采用含时间依存自变量Cox回归模型判断自变量是否具有时间依存性,通过检验上面模型的回归系数与0是否有显著性差异,如果回归系数与0有显著性差异,说明该自变量具有时间依存性,反之则没有时间依存性,可以直接使用Cox回归模型。
在实际生活中,影响风险函数的自变量经常是会随着时间的改变而改变的,当数据分析者怀疑自变量具有时间依赖性时,那么就意味着这个自变量对风险函数的影响也会随时间的改变而改变,这时可以用含时间依存自变量的Cox回归模型来分析。
案例分析
在医学领域,普遍认为某种疾病的死亡率会受到害怕、压抑和焦虑等不良心理的影响。众所周知,在器官移植领域,需要心脏移植的病人必须等到合适的心脏提供者出现才能进入心脏移植程序。如果没有合适的心脏资源,就需要无限期等待。在人们的主观意识中,合适的心脏资源出现之前和出现之后,等待心脏移植的病人状态是完全不一样的,那么这种心理变化是否会影响生存时间分布呢?美国斯坦福大学曾经针对这个普遍认识进行了一项心脏移植对延长生存时间的研究。数据如下图所示:
分析思路
等待时间表示在合适的心脏资源出现前,病人的等待时间。如果某个需要心脏移植的病人一直没有等到合适的心脏资源,那么将等待时间设置为9999,其它等到心脏资源的病人,其等待时间按实际周数填写。
分析步骤
1、选择菜单【分析】-【生存分析】-【Cox依时协变量】,在跳出的菜单中按照下图操作。T_COV_表示构建的随时间变化的新自变量,这个自变量是通过将原来的自变量X(是否出现合适心脏资源)构建成随时间变化的新自变量。
很明显,是否出现心脏资源与等待时间是相关的,那么新自变量X(t)的构建公式为:(T_<等待时间|等待时间=9999)*0+(T_>=等待时间)*1,新自变量可以表示成下面的形式:
2、点击【模型】按钮,按照下图进行操作,和上一篇文章Cox回归模型的操作过程是完全一致的。
3、点击确定,输出结果。
结果解释
1、模型拟合结果:从结果可知,没有纳入自变量时,模型的-2对数似然值为157.061,纳入T_COV_自变量后,模型-2对数似然值为157.051,仅仅减少了0.01,显著性0.919,大于0.05,说明该自变量对于模型没有贡献。
2、回归系数结果;根据结果可知,新构建的时间依存性自变量X(t)的回归系数估计值为-0.064,显著性为0. 919,也就是说回归系数与0没有显著性差异。该结果说明合适心脏资源出现与否对病人的生存时间分布没有影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12