大数据已成为重要战略性资源
信息技术广泛应用于经济社会发展领域,产生了十分庞大的各类数据,人们形象地称为大数据。狭义的大数据是指以数量巨大、来源分散、格式多样、应用价值高为主要特征的数据集合。而广义的大数据除了数据集合的含义外,还包括对这类数据进行采集、存储和关联分析,以及从中发现新知识、创造新价值、提升新动能的新技术和新业态。因而,大数据所代表的不仅仅是重要的技术变革,而且是战略性经济资源,大数据服务业已成为前景广阔的新技术产业。
大数据的价值在于可提供尽可能多的详尽信息并对信息进行有效处理。通过全面、精确、即时的大数据技术,提升整体数据分析能力,推动大数据开放共享,促进资源整合,发现其中所蕴含的价值。大数据带来的科技革命和经济革命,将极大地影响经济社会发展。以数据流引领技术流、人才流、资金流、物资流,推动生产要素的集约化整合、协作化开发、高效化利用、网络化共享,可形成新的资源配置模式,改变传统的生产方式和经济运行机制,提升经济运行效率和水平。
大数据及其解析能力已成为企业核心竞争力,预计到2050年全球将有超过80%的企业依赖各种平台生存,平台型企业将占据全球价值链的高端。大数据时代,企业只有融入互联网生态圈,充分运用大数据有效整合资源,才能把握发展主动权,赢得市场竞争优势。
大数据可以突破传统资源增长的极限
传统资源是有限的,煤炭可以再开采160年,石油仅能再开采40年。基于传统资源的有限性,经济发展也是有极限的。但大数据作为新的资源,其开发和增长却是无限的。由于大数据作为新的要素加入,改变了传统要素格局,新知识和新技术替代资本成为经济发展的主导因素,同时也为传统要素带来巨大的附加值和增长空间。例如,以往电力的有效利用率为60%—70%,而另外的30%—40%由于不合理的规划或调配而浪费流失了,如果采用大数据分析,采用人工智能合理调配,这30%—40%节能空间将大有作为。美国通用电气公司预测,“利用传感器、大数据、人工智能等技术,在商业航空领域未来15年节约1%的燃料就可节约300亿美元;全球所有天然气火力发电厂的效率提高1%,就能节约价值660亿美元的燃料;全球医疗效率提高1%,就可节约超过630亿美元的医疗成本”。
由于大数据资产可以复制、递增、共享,以其效益递增可以弥补传统资源效益递减,这样就改变了以往资源的投入、组合和利用方式,加之依托互联网延展了资源配置平台,使得经济发展中的动力机制、要素依赖、创新驱动、思维模式、企业组织架构等均发生了明显的变化。以往经济增长方式高成本、低效益,效益呈递减趋势。在信息时代,大数据成为重要的生产要素,经济发展方式是低成本、高效率,而且效益呈递增趋势。而且,这种发展是智慧的、绿色的、共享的可持续发展,是发展方式的真正转变。
积极开发大数据资源,筑牢产业发展根基
为用好大数据资源,应大力发展大数据及其产业,围绕数据收集、储存、处理、应用等环节,加快计量、标准化、检验检测和认证认可等大数据产业基础建设,加速大数据开发应用。大力开发大型通用海量数据存储与管理、大数据处理与开发等软件产品,着力开发海量数据存储设备、大数据一体机等硬件产品,带动芯片、操作系统等技术产品发展,构筑健全的大数据产业体系。提供与重点行业领域业务流程及数据应用需求深度融合的大数据解决方案,提升相关产业大数据资源的采集获取和分析运用能力,带动技术研发创新、管理方式变革、商业模式重建和产业价值链重构,推动大数据在研发设计、生产制造、经营管理、市场营销、售后服务等产品全生命周期、产业链各环节的应用。大力发展便捷服务、用户体验、个性化服务、数据价值挖掘等新型大数据服务业,提升生产智能化、经营网络化、管理高效化、服务便捷化能力和水平。
加快推动数据资源开放共享和开发应用的同时,必须建立大数据安全保障体系,构筑适应大数据发展的法规制度,健全大数据时代信息安全新秩序。从政策上关注大数据战略性和基础性重点领域,加快相关法律法规的出台步伐,就数据所有权和数据隐私权制定标准或法规,依法保护公民和国家的大数据安全。明确大数据采集、开发、应用、共享等各环节网络安全保障的范围边界、责任主体和具体要求,做好大数据平台及服务商的可靠性及安全性评估、应用安全评测、监测预警和风险评价。支持国产大数据技术发展与平台建设,采用安全信任产品和服务,积极扶持和引导我国骨干企业加大研发力度,努力突破核心技术,提升基础设施关键设备自主可控水平和信息安全防御能力。
我国是全球网民最多的网络大国,互联网、移动互联网用户规模全球第一,拥有丰富的数据资源和市场优势,大数据部分关键技术研发已经取得突破。要树立新发展理念,充分运用我国数据规模优势,实现数据质量、规模和开发应用水平同步提升。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21