大数据应用价值与挑战并存
互联互通是基础,定制化服务是中心,懂数据会分析是关键。
什么是大数据?什么是数据?什么是资料?资料就是生产过程、管理过程,乃至经济、社会、生活过程的记忆,那些记忆可能表现在一个文件、一段演讲、一段文字上。资料放在计算机里就叫数据,所以数据是指以编码形式存在的信息载体。真正的大数据是指大而复杂的资料集,包括了海量性、时变性、异构性、分布性等特点,是我们从互联网的数据中能够观察到的特征。只要数据量超过临界量,就叫大数据。
大数据离不开互联网。近几年,互联网的发展走向是从复杂信息传递到消费互联,再到生产互联也就是物联网,然后到智慧互联。其实,这些新技术都是信息技术的一个层面,真正产生效益和作用的是所有技术的综合运用。
互联网和云计算是基础设施,物联网是交互方式,人工智能是应用模式,大数据是最底层的信息技术,任何工业要实现“两化”,任何政府要实现科学决策,大数据是基本标配。
那么,应该如何运用大数据呢?首先,明确目标是前提。这是推出大数据产业最重要的一步。其次,拥有数据是基础。没有数据就谈不上大数据产业。再次,计算平台是支撑。没有一定的计算架构和平台就无法计算。此外,分析技术是核心。这是当今较少提到的一个主题,在整个大数据链条中,有些链条做得过分粗壮,有些链条过分纤弱,即产业链布局不均衡。如果过分膨胀,将会产生新的产能过剩。最后,产生效益是根本。
大数据可以带来超凡价值。在这个过程中有很多观念要改变,要认识到数据是资产,用户是资源,服务即感知。大数据突飞猛进地发展能够解决相当多的问题,但仍然存在挑战。主要是分析基础被破坏、计算技术待革新、真伪判定需要重建以及对新技术的盲目所引起的盲从。总体来说,仍需集中力量攻克挑战,大数据的发展才能有大的突破。
继互联网之后,真正能够对企业产生重大影响的就是大数据。同时,要将大数据与其他技术相结合。现在人工智能潮正在到来,在可见时间内,人工智能真正能够发挥作用的就是数据智能,即大数据。因为人工智能简单来说可分为两大类,一类是模型人脑工作机制、行为方式,是仿脑类脑的技术;另一类是快速的认识,因为人脑对大数据的认识本身没有那么快,但获取数据的速度极强,可以从数据中分析出人类认识问题特定的方式方法,这就是数据智能,也叫人工智能。
同时,大数据能服务于转型升级,但我们至少要清楚什么是转型和升级。工业中的转型,就是从过去以产品为中心进行组织设计、制造、销售管理,转型到以服务和以定制化为中心。
最近有一个基本的观点说,现在正在从过去的“老三基”——材料、工艺、零部件,转变为“新三基”——大数据、传感器和零部件。对一个行业来讲,数据的复杂性来源于设计、制造、运行和服务,来源于对每一个数据的仔细分析。由于离散型和连续型并存、数值型和非数值类型并存、结构化和非结构化并存,大数据必须关注完整属性,必须关注产品全寿命特性,必须关注全方位连接,关注制造系统融合等,这使得我们认为基本难点在认知知识数据。其实全链条数据如物理模型的结合,也是技术难点。
大数据是新一代信息技术的基础性技术,需要推进应用。工业大数据非常有潜力,但一定要解决好定位、规划、切入点、标准、开发共享等问题。互联互通是基础,定制化服务是中心,懂数据会分析是关键。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21