用大数据 驱动银行智能转型
大数据、人工智能、区块链、云计算、物联网、移动支付等新兴技术蓬勃发展并不断加速向社会生活的各领域渗透融合,对经济发展和社会进步产生了深刻影响,金融业的产品服务、运营管理和客户体验也在技术的驱动下加速了创新变革的步伐。
大数据是重要的生产资料,是人工智能大脑流动的血液,作为国家“互联网+”行动的重要战略资源,对金融机构智能转型化发展的驱动作用越发凸显,成为构建银行未来核心竞争力的关键。
驱动银行业数字化转型
目前,良好的政策环境也推动中国大数据产业快速发展。为了鼓励包括大数据在内的新兴技术发展,中国监管机构与时俱进地制定和出台了系列政策,有力地保障和促进了行业的整体稳健发展。《国务院关于积极推进“互联网+”行动的指导意见》明确要求鼓励金融机构使用互联网拓宽服务覆盖面,使用云计算、移动互联网、大数据等技术手段来加快金融产品和服务创新,在更广泛地区提供便利的存贷款、支付结算、信用中介平台等金融服务。《中国银行业信息科技“十三五”发展规划监管指导意见(征求意见稿)》也明确要求要构建数据共享机制,逐步实现内外部数据的融合;统筹规划大数据基础设施,推进大数据平台建设;建立大数据服务体系,扩大数据服务的用户覆盖面;积极扩大信息来源以奠定大数据应用基础;开展大数据营销,提高获客能力和客户黏性;加强大数据风控,全面了解运营情况并及时优化业务流程,以推动业务创新;拓宽普惠金融的服务范围为实体经济发展提供支撑。
大数据、人工智能等技术的发展正处于由量变到质变,从概念到应用的阶段,在新一轮技术革命、产业升级和经济转型的历史交会点上,抓住了就是机遇,错过了就是挑战。一个银行能否百年长青,核心在于理解和拥抱新技术,以创新推动转型发展。大数据作为银行业的核心资产,“用数据驱动转型发展”已经成为大家的共识。商业银行拥有大量的金融交易数据,具备成为数字化转型的先天优势。过去海量的结构化数据相互割裂、静止,沉睡在数据库中。随着新技术的快速进步,金融行业的数据应用开始流动融合,变得活跃而有生命力。大数据已经成为银行业创新的一把利器,具备大数据驾驭能力的金融机构可以实现基于数据驱动的管理决策、服务运营、风险管理及产品创新等的智能化转型与变革。
同时,对于占国家金融命脉主体地位的商业银行,以至于整个金融体系而言,大数据可以解决部分黑色产业漏洞及安全威胁。互联网金融蓬勃发展的同时也面临着更加严峻的安全考验。首先,传统黑客变种升级,钓鱼网站、木马僵尸、撞库攻击、安全漏洞等越发肆虐,黑产技术的先进性、复杂性、隐蔽性和持续性都远远超出了传统网络安全技术的应对与防护能力范围,不断侵蚀金融生态安全,犹如溃堤的蚁穴,若无数个不受控制的单个风险点最终全面开花将会带来巨大的损失。其次,新技术、新架构的应用引入新的安全风险与威胁。再次,互联网环境下的信息泄漏和信息滥用等问题越发严峻,银行业如何在开放合作中有效保护客户隐私与信息安全任重道远。所谓道魔互博,借助大数据技术可以解决创新阶段的黑产漏洞及安全威胁带来的制约。比如基于海量的计算和存储能力打破信息孤岛,持续丰富信息数据维度,完善治理数据质量的同时可实现威胁情报与信息共享。再比如,借助大数据技术并结合机器学习及人工智能,可以有效加强网络安全威胁的态势感知、预警与分析,提升金融网络安全防御的广度与深度,前瞻性地了解对手,提前感知并精准定位风险,并采取有效的风险应对措施为业务的稳健发展和银行的智能转型保驾护航。
传统商业银行的挑战
传统商业银行是最先使用信息技术也是信息技术使用最广泛的行业之一。银行对客户、账户信息的存储和使用都有健全的管理机制。但是与新兴的互联网企业相比,由于起点不同,银行的数据管理能力存在明显差距,银行业整体在大数据使用方面也面临挑战。
首先,银行在内部数据收集方面遇到的挑战。银行在数据应用方面的挑战是全方位的,传统的IOE架构因为存储成本相对较高,大量的历史数据存储在磁带中,甚至档案馆中还有大量没有数字化的物理凭证或没有结构化的影像数据。即使将这些数据结构化,银行还要面临历史数据标准不统一、缺乏有效数据治理手段、数据质量参差不齐、数据应用无章可循等历史遗留问题。与此同时,传统的以账户为中心,以会计为导向的银行IT系统缺乏收集客户账户查询、咨询、投诉等行为信息的能力,无法体现高维度的数据价值。数字时代银行的IT系统必须是以客户为中心,以市场为导向,具备采集全渠道客户基本信息、交易信息、交易对手信息、客户与银行的接触轨迹信息等更多维度信息的能力。这就要求银行从客户信息治理、丰富客户模型开始,不断完善客户、账户信息的同时开始客户行为信息的收集。数据的价值将会随着维度的增加而显著提高。
其次,银行在外部数据收集方面遇到的挑战。互联网平台公司拥有大量与客户频繁互动的场景,在收集客户行为信息、客户之间关联信息等方面具有天然优势。银行必须通过与互联网企业合作才能采集更多维度的信息,但是银行必须在保护客户隐私的合规前提下,及时有效地获取相关信息。其合规成本与合作的代价也是传统银行在开发相关数据应用时必须考虑的。
再次,银行在大数据应用IT支撑方面遇到的挑战。大数据应用的软硬件支撑平台对传统银行的IT系统提出了新的要求。特别是在分布式存储和处理实时数据能力方面银行迫切需要专业的人才支持。非结构化数据的结构化,具备自学习能力的数据模型机制,还要求银行具备将前沿的人工智能技术与大数据应用相结合的能力。此外,商业银行还需要在实践中培养可以支持开放式平台架构、分布式应用系统、Hadoop架构等的开发和运营维护人员。
大数据金融的探索与展望
在外部技术变革驱动和内部转型发展的共同推动下,中国银行业都在积极地践行国家“互联网+”战略,前瞻性地探索并积极推进新兴技术的应用,将科技创新与业务创新深度融合。国内多家银行目前已经在精准营销、智能风控、跨界合作、普惠金融、数据治理等方面取得了显著的应用成效,有效地提升了自身网络金融包括风险管理、大数据应用、人工智能应用、云计算、产品效率等核心能力。结合中国银行的实践经验而谈,对于银行业而言大数据金融的探索与实践,需要提升以下四个的方面的能力与效率。
一是大数据洞察,建立客户全生命周期管理。过去银行对客户的了解主要依赖于开户基本信息和账户交易情况,对客户行为、偏好、动态知之甚少,无法满足不同客户千变万化的需求。并且,在中国的信用体系还不完备的情况下,很大一部分长尾客户是“信用白户”,当前校园贷市场的乱象和正规金融机构的缺位也有直接的关联。针对这些问题,多家银行尝试利用大数据对客户进行全面画像,在洞察客户多元化需求的基础上提供个性化服务和差异化定价,同时精准识别潜在客户,激活睡眠客户的同时,提升客户满意度。以中国银行为例,一方面以“+互联网”的模式推动传统银行业务触网,另一方面以“互联网+”创新服务,基于大数据技术识别客户的贷款意愿、评估还款能力,推出了全流程在线信用贷款的秒贷产品。同时,把目光放至客户的全生命周期信用管理,用大数据技术“提前锁定”潜力客户,动态更新信用评分,了解客户动向,测算包括校园贷、助学贷在内的金融产品的未来盈利能力。也正是基于整合分析了海量金融数据,精准描绘客户画像,预测客户的成长属性,秒速实现从申请、审批到放款的业务流程全在线,中国银行可以在大数据技术的帮助下,积极践行国家普惠金融战略。而发展普惠金融是金融支持实体经济的必然要求,也是银行业转型的重大机遇。普惠金融的核心理念是“金融普惠”,解决普惠金融发展特别是信贷业务的痛点,需要解决效率、成本、体验、风控等四个方面的核心问题。大数据提供了解决之道。利用大数据能够在一定程度上提升风控能力,提高业务处理速度,降低边际成本。
二是大数据风控,助力银行智能化转型。商业银行的经营管理和风险管理面临诸多前所未有的挑战,传统信贷投放中,客户经理一般用财务报表、人行征信、抵质押品等基本信息,依靠经验进行信用评估。传统的视图反映了客户当前静止的、切片式的状态,受限于能力和信息的不对称,就算“握着客户的手放款”也未必能真实了解客户的实际风险承受能力并做出预判,从而导致银行遭受风险损失。而基于大数据技术的风控平台打通了行内行外数据孤岛,若更加充分利用政府平台公开信息以及互联网信息,结合人工智能建模技术在海量信息中进行价值挖掘,商业银行大数据应用将全面嵌入业务流程,提高风险精细化管理水平的同时也能有效地提升风险决策的实时性。比如利用知识图谱挖掘技术挖掘集团间、企业间、主要控制人间隐藏关联关系,并生成可视化关联关系图谱,及时发现异常避免不必要的风险损失。大数据应用使得金融机构以动态的、联系的、全面的、发展的视角描绘客户成为可能,传统风控的理念是根据历史预测未来,而现在的技术手段让我们在风控上不仅可以“以史为鉴”,更可以“继往开来”。
三是大数据合作,跨界打造金融数据生态圈。互联网企业加入到以往只有传统金融机构的市场竞争中,对产品服务、盈利模式和客户体验进行了颠覆,传统行业都不同程度受到冲击,在经济新常态下传统企业更要抱团取暖,形成合力。而大数据的价值在于准确、及时地整合和应用行业内外的有效数据,把跨业、跨界多维度的数据集聚起来,发挥传统行业各自领域所长,打造数据生态圈。因此商业银行需要建立合作思维,以合作的心态与能为自身提升金融效率、降低风险的大数据机构进行跨界合作,实现共赢。
四是强化安全管控,建立健全客户信息安全机制。大数据的发展是把双刃剑,大数据在不断发展的过程之中,买卖数据和信息泄露等威胁个人信息安全并侵犯个人合法权益的不法事件频出。2017年6月1日《中华人民共和国网络安全法》正式实施,加强了对个人信息的保护。中国银行业应严格遵循相关法律法规要求,持续强化基础设施的安全保障与防护体系,持续强化数据安全治理,持续强化数据流动与利用管理机制。
为充分发挥大数据潜力以驱动网络金融业务发展,中国银行业需构建政产学研用为一体的开放、共享、互利、共赢的大数据产业生态体系。在数据共享方面,应加强顶层设计和统筹协调,推动资源整合和公共数据互联开放共享,借力“一带一路”倡议契机推动全球范围内的全息数据共享。在数据安全方面,应不断完善法规制度和标准体系,切实保障数据安全。在数据质量方面,高质量的数据是大数据发挥效能的“生命线”,应采取系统性方法进行全生命流程的数据质量管理,从数据源头出发改善数据质量并提供持续迭代的资源投入。在人才队伍方面,应着力培育具备业务视角与技术敏锐度的跨界复合型人才,为建立大数据分析导向的智能化应用和全生命周期链路持续提供输入。在创新研究方面,应聚焦大数据创新前沿,加强前瞻性研究的同时利用柔性团队迭代开发快速孵化新应用。
可以预期,未来将有越来越多的商业银行用数据驱动银行智能转型发展,打造有温度的普惠金融产品,培育健康向上的金融生态,为实体经济服务,为普罗大众服务。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16