真实和完备是大数据分析的基础
随着大数据时代的到来,网络数据的真实性问题日益受到关注。相较以抽样调查为主的小数据时代,在大数据时代,如何进行正确的数据清洗和数据分析,以便从海量信息源中获取真实而有价值的信息内容,并生成指向性清晰的决策指导,成为哲学社会科学界和自然科学界共同面临的课题。
数据来源:确保具备大数据品质
在中国人民大学新闻学院教授喻国明看来,高品质数据来源是确保大数据分析真实、可靠的首要条件。“根据国内外的相关技术发展情况分析,当前比较权威、可靠的大数据来源主要有两个,一是掌握多方面的社会运行数据的政府部门,二是在某一领域拥有数据采集能力的大型公司,如数字移动、网购、社交媒体、搜索引擎、输入法软件等公司。”
喻国明认为,大数据时代的一个重要特点,就是全方位、立体式的数据分析成为可能。“不过,单个部门或企业所掌握的大数据往往类别单一,对其的分析结论难免陷于零散、维度单一。”另外,从严格意义上讲,大数据不是政府、企业的“私有财产”,它与社会个体的权利和隐私密切相关,应当属于全社会。
那么,目前民间进行的大数据分析“靠谱”吗?上海交通大学舆情研究实验室主任谢耕耘介绍,如果对大数据来源进行分类,可以分为政府、大企业的定点监测,以及民间依靠软件等技术手段的数据挖掘。对此,喻国明这样评价:相对于政府部门与大型网络企业的大数据采集能力,仅仅从信息海洋中简单挖掘、捞取的部分所谓的“大数据”,远远不具备真正的大数据品质。
北京邮电大学互联网治理与法律研究中心主任李欲晓更愿意将大数据分析结果看作一种数据产品。“衡量其价值,关键在于它是否面向特定客户群提供了所需数据产品类型。”目前,社会各界已经意识到大数据时代的到来,许多机构和个人也在积极开发相关软件和产品,这个过程的最大价值,便是提升了全社会的大数据处理能力。
数据分类:建立更多有效标签
谢耕耘认为,通过搜索引擎的分析软件进行数据挖掘,是当前许多民间研究机构获取所谓“大数据”的主要途径。目前,付之应用的诸如“爬虫”等大数据挖掘软件,其作用是非常有限的——往往在只挖掘到几千条数据时,就被相关网络平台为防止机器人挖掘而设置的障碍所拦截,并被要求反复输入验证码。“因此,这种依靠软件来执行的数据挖掘方式,往往需要数十台、上百台服务器,以及高容量的带宽和大量的IP地址。”其挖掘所获得的大数据,通常是局部的、不完整的,难以推断整体状况。
从这个意义上看,尽管目前从事大数据分析的人力、机构很多,但真正做出可信服的研究成果的团队并不多。在李欲晓看来,当前的大数据分析尚未成熟,仍处于“成长期”。
喻国明认为,大数据由不同数据集构成,若想全面、立体式反映某一个体、事物、事件,其关键在于对不同数据集进行关联分析,而关联分析的前提是建立标签。“对每一个数据文本做标签,就像图书分类一样。几十万册的图书,有了分类,才能够有序管理。面对大数据的海量信息,有了标签,就可以轻松找出需要的信息。”尽管不可能存在一个100%包容性的大数据库,但对数据进行快速、有效的处理与整合,无疑能为未来深入、真实、可靠的分析夯实基础。
“有些标签是自然形成的。例如,通过社交媒体的个人资料,就可以轻松分出年龄、性别、职业等不同标签。还有一些标签,则要通过网络行为分析才能认定。例如,在分析个人言论的社会特征时,可根据网络发言使用的词频、语义进行计算,并依此为网民贴上早起群体、晚睡群体,时尚型消费者、保守型消费者,高收入者、低收入者等标签。”喻国明认为,在大数据时代,一个文本碎片被打上的有效标签越多,其可被利用的价值越大。
数据分析:以小数据为“校准”
中国社会科学院新闻与传播研究所研究员姜飞做了一个有趣的比喻,“在大数据时代,数据信息好比货币,要像研究货币一样研究信息数据。”在他看来,“信息货币”一旦不可信,也容易发生“金融危机”;要提高大数据分析的可信度,就要找到一个“校对的准绳”。
喻国明认为,传统的抽样调查在发布结论时,需同时公布调查是否遵守了“21条规则”(包括数据来源、调查方法、资助者等),以保证调查报告不会产生误导。未来,大数据分析也应该同步公布数据来源、数据量、数据截取的时间区间等有关数据品质的指标。“如果数据来源是通过‘爬取’软件获取,那么公布‘爬取’量有多大,可以在一定程度上帮助受众判断数据分析的真实度、可信度。”
另外,尽管小数据是小范围的、片段的,但它有一个核心价值,即能够提供准确的结构性分析,拥有可靠的统计学价值。喻国明表示,“大数据虽然信息丰满,但整体构造难以看清,因此,小数据能够成为大数据判断结构性位置的校标。”
李欲晓还表示,大数据时代来势迅猛,关涉企业社会责任、个人社会规范等方面的法律法规正在完善。未来,在数据来源、数据分析、结论校准等方面,应陆续出台相关的法律法规和学术规范,以保障大数据在国家治理中发挥更大作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09