SPSS数据分析—多维尺度分析
在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大。而我们的分析目的也是想查看这些对象间的差异性或相似性情况,此时由于数据的组成形式不一样,因此不能使用对应分析,而需要使用一种专门分析此问题的方法——多维尺度分析(MDS模型)。多维尺度分析和对应分析类似,也是通过可视化的图形阐述结果,并且也是一种描述性、探索性数据分析方法。
基于以上,我们可以得知,多维尺度分析经常使用在市场研究中:
① 可以确定空间的维数(变量、指标),以反映消费者对不同品牌的认知,并且在由这些维构筑的空间中,标明某关注品牌和消费者心目中理想品牌的位置,选择的品牌不宜过少也不宜过多,一般7-9个。
② 可以比较消费者和非消费者对企业形象的感觉。
③ 在进行市场细分时,可以在同一空间对品牌和消费者定位,然后把具有相似感觉的消费者分组、归类。
④ 在新产品开发方面,通过在空间图上寻找间隙,可以发现由这些间隙为企业带来的潜在契机。
⑤ 在广告效果的评估方面,可以用空间图去判定一个广告是否成功地实现了期望的品牌定位。
⑥ 在价格策略方面,通过比较加入与不加入价格轴的空间图,可以推断价格的影响强度。
⑦ 在分销渠道策略方面,利用空间图可以判断品牌对不同零售渠道的适应性,从而为制定有效的分销渠道提供依据。
在市场研究中,我们要注意的是选择的品牌数量要适中,并且分析的问题要明确,每组数据只能分析一个问题,比如对一组饮料产品收集的数据不能既反映口感又反映价格。
多维尺度分析收集的数据值大小必须能够反应两个研究对象的相似性或差异性程度。这种数据叫做邻近数据,所有研究对象的邻近数据可以用一个邻近矩阵表示。反映邻近的测量方式有:
相似性-数值越大对应着研究对象越相似。 差异性-数值越大对应着研究对象越不相似。
测量邻近性数据的类型有:
①两个地点(位置)之间的实际距离。(测量差异性)
②两个产品之间相似性或差异性的消费者心理测量。(差异性或相似性)
③两个变量的相关性测量。(相关系数测量相似性)
④从一个对象过渡到另一个对象的转换概率。例如概率反应了消费者对品牌或产品偏好的变化。(测量相似性)
⑤反映两种事物在一起的程度。例如:用早餐时人们经常将哪两种食品搭配在一起。(测量相似性)
⑥谁喜欢谁,谁是谁的领导,谁传递给谁信息,谁是谁的上游或下游等等社会网络数据等(测量相似性)
邻近数据即可以直接测量(距离),也可以通过计算得到(变量间的相关系数)。
多维尺度模型根据测量的尺度不同可以分为:
①古典MDS模型,针对收集的数据为比率和区间,也就是直接可以测量距离的情况
②非度量MDS模型,收集的数据为有序数据,针对无法直接测量距离,只能通过评分测量的情况
根据测量的个体数量不同,可以分为
①不考虑个体差异的MDS模型(ALSCAL),即单个测量个体
②考虑个体差异的MDS模型(INDSCAL),即多个测量个体
这里说的测量个体并不是选取的测量指标,而是实际测量的个体,相当于样本。
由于多维尺度分析是用来分析差异性或相似性的,也带有度量的含义,因此在SPSS中也将其归在了度量过程中。共有三个过程,下面我们来分别介绍
一、不考虑个体差异的MDS模型
本案例进行的是最基本的多维尺度分析,目的是分析每个城市的距离情况,只有一个个体,并且收集的数据直接是距离数据,因此采用古典MDS模型,数据组成如下
分析—度量—多维尺度(ALSCAL)
二、考虑个体差异的MDS模型
实际分析中,我们往往不会只选取一个样本,比如受访者肯定不止一个,那么收集上来的数据会变成多个矩阵,如果将其浓缩为一个矩阵会损失大量数据信息,而直接使用重复多维尺度模型当然也是可以的,但是该方法没有考虑个体间差异,因此并非最佳选择。而考虑个体差异的MDS模型不仅分析对象间的结构,而且会进一步分析对象间的差异。
本例中识10位受访者对10种饮料的口感差异性评分,分值越大差异越大,10位受访者的数据形成了10个数据阵,数据如下
下面我们选用考虑个体差异的MDS模型进行分析
三、基于最优尺度变换的MDS模型
将最优尺度变换引入MDS模型式对传统MDS模型的拓展,我们来看使用最优尺度变换的MDS模型再来分析一下饮料的数据
分析—度量—多维尺度(PROXSCAL)
四、多维展开模型
以上的MDS模型不管是传统MDS还是非度量MDS,都是要求各对象间不存在分组,分析时是直接考虑各对象两两间的距离远近。但是实际问题中,可能会遇到对象被分为两组,我们是想考察这多个组之间的相似性或差异性,而对组内对象间的距离远近并不关心,这时传统的MDS模型就不再适合,而需要采用多维展开模型进行分析。
看一个例子,现在收集了两组变量,一组是场景,共15个水平,另一组是行为,共15个水平。现在想分析这两组变量间的差异性或相似性,数据如下
我们用多维展开模型进行分析
分析—度量—多维展开(PREFSCAL)
接下来会分别输出行列变量的坐标,以及行列变量在二维分布图,但是我们实际上更关心的是行列变量的联合分布图
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21