对运用大数据服务职工的思考
工会运用大数据,是以数据激发工会组织活力,从工会的角度分析数据、应用数据,并让其成为工会组织服务不可缺少的一部分;就是以数据管理工会工作,以数据服务职工,让收集和使用数据成为工会工作的重要一环,只有这样,才能更好地服务职工。
时下,谈论大数据的意义或作用,归根到底就是辅助决策。利用大数据进行分析,能够总结经验,发现规律,预测趋势,为辅助决策服务。掌握的信息越多,决策才能越科学、精准、合理。也可以这样说,大数据本身不产生价值,大数据必须和其他具体领域、行业相结合,提供决策帮助才具有价值,并影响到每个人的工作、生活和思维。
大数据也被称为巨量资本,发挥其数据量大、种类多、实时性强、价值大等优势,为工会所用、为职工服务,理应成为各级工会组织的必修课,以更好地服务基层、服务职工。因此,大数据、云计算技术的运用,已成为不可阻挡的潮流。
事实上,无论教育引导职工,还是为职工服务,工会组织都要站在信息技术与社会变化的交汇点上,使工会的各项工作用“数据说话”。近几年,虽然工会组织在为基层、为职工服务方面不断采取积极措施,但职工的满意度还是不高,工会组织“娘家人”的形象仍未真正体现。细究其中原因,服务工作略显零碎散乱是其主因。
工会组织与政府有关部门为职工服务的资源缺乏统筹,工会服务职工的信息不对称、针对性不强,缺乏个性化等,由此产生职工服务的供需矛盾。从职工需求而言,农民工子女入学难,困难职工吃住难,下岗职工再就业难等问题,还没能从根本上解决。从这个意义上说,各级工会组织有必要搭乘大数据、云计算的“顺风车”,提高服务职工的精准度。
眼下,对于工会组织而言,缺的并不是数据,而是快速获取、处理、分析和提取有价值的、海量的交易数据、交互数据的意识和手段。培育并丰富这一意识和手段,推进工会组织的网络化建设,培养工会干部的“数据观念”,应用好“数据思维”,积极探索建立工会大数据处理中心,应用综合平台和职工服务平台,连接电脑终端、移动终端,建立微信和工会网站,设置工会办公、物联、维权、帮扶、阅读、社区、众筹等模块,将数据进行汇聚、关联、优化,实现工会流程的无缝对接,最终能使职工享受到“一站式”、“智能化”的服务。
大数据为职工服务,离不开工会“信息基础设施”建设,必须由易到难,从简到繁,由门槛相对较低到技术含量较高的方向努力。大数据与云计算必须有机结合,相辅相成。大数据挖掘处理需要云计算作为平台,支撑大数据挖掘,而大数据涵盖的价值和规律又使云计算更好地为工会的应用发挥更大的作用,作为实时交互海量数据的查询、分析,提供各自需要的有价值的信息。
如此一来,大数据改变了工会工作。过去,首先认识的是事物的表面,通过因果关系,将有限的工会“先进典型”剖析其中的内在机理,逐步推开,从而找到工作规律。而现在可以利用高效、低成本的计算资源分析海量数据与工会工作的相关性,在有关数据上呈现一种秩序,快速找到工会工作共性规律。
置身于大数据时代,带给人们的思维方式发生根本变化,从“自然思维”转向“智能思维”,使得大数据也像有生命力一样,获得类似于“人脑”的智能,甚至智慧。工会运用大数据,是以数据激发工会组织活力,从工会的角度分析数据、应用数据,并让其成为工会组织服务不可缺少的一部分;就是以数据管理工会工作,以数据服务职工,让收集和使用数据成为工会工作的重要一环,只有这样,才能更好地服务职工。
数据分析咨询请扫描二维码
在进行行业分析时,了解和掌握常用的业务术语至关重要。这些术语涵盖了市场竞争、消费者行为、企业战略等多个方面,为分析师提供 ...
2024-11-28数据治理在企业战略中的关键作用 企业数据战略的成功实施离不开有效的数据治理,这是确保数据质量、一致性、可用性、安全性和合 ...
2024-11-28定义与用途 主数据(Master Data) 主数据是组织内多个系统、应用和流程共享的核心业务实体数据,例如客户、产品、员工信息。这 ...
2024-11-28中小企业数据安全管理挑战 在当今数字化时代,中小企业面临着越来越多的数据安全管理挑战。数据泄露可能导致灾难性后果,从信任 ...
2024-11-28在当今信息爆炸的时代,数据分析已经成为商业领域中至关重要的一环。从制定战略决策到优化运营流程,数据分析贯穿于各个层面,为 ...
2024-11-28数据治理技术在金融行业中扮演着至关重要的角色,不仅有助于保护敏感信息和遵守监管要求,还可以提升数据管理的效率和质量。优化 ...
2024-11-28数据在当今商业环境中扮演着至关重要的角色,而数据的质量则是保证这些信息资产有效利用的关键。数据质量检查流程旨在确保数据准 ...
2024-11-28企业文化和数据制度建设在当今数字经济时代扮演着至关重要的角色。随着政策指导的日益完善,构建数据基础制度已成为国家战略的一 ...
2024-11-28建立健全的数据治理框架 - 企业应建立明确的数据治理框架,包括数据质量标准、数据管理流程和责任分配,以确保数据的准确性、一 ...
2024-11-28数据运维的重要性在当今数字化时代日益凸显,而要确保数据系统稳定、高效运行,则需要遵循一系列最佳实践。这些实践涵盖了诸多方 ...
2024-11-28数据退役需求分析 - 对数据退役需求进行深入分析,包括公司管理层和各业务领域的需求,以及外部监管要求。 - 考虑内部数据应用的 ...
2024-11-28《Python数据分析极简入门》 第2节 8-3 Pandas 数据重塑 - 数据交叉表 数据交叉表 交叉表显示了每个变量的不同类别组合中观察到 ...
2024-11-28数据分析工具推荐 数据分析工具的选择至关重要。不同工具适用于不同的需求和场景。以下是一些推荐的数据分析工具,根据您的需求 ...
2024-11-27选择适合您需求的数据分析工具 数据分析作为商业决策过程中的关键环节,工具的选择至关重要。不同的工具适用于不同的场景和需求 ...
2024-11-27数据架构文档的编写涉及多个方面,包括内容结构、编写原则和具体要求。遵循规范可以帮助团队更好地理解和管理数据架构,支持项目 ...
2024-11-27挑战与解决方案概述 在数字化时代,数据开放共享对于推动创新和发展至关重要。然而,这一进程面临诸多挑战。保护用户隐私、确保 ...
2024-11-27促进科学研究和创新 数据开放共享为研究人员提供更广泛的资源和合作机会,加速科学知识的发展。通过访问他人的数据集,验证研究 ...
2024-11-27数据组织与存储策略 数据模型是数据仓库和商业智能系统的核心,通过合理的数据组织和存储策略,确保高效、低成本、高质量地利用 ...
2024-11-27持续关注数据系统运行状态 - 数据设计与开发完成后,维护与优化工作成为至关重要的环节。这个过程需要持续且细致的关注,以确保 ...
2024-11-27数据服务未来的趋势 智能化和自动化: 随着人工智能和机器学习技术的飞速发展,数据服务领域正逐渐朝着更智能化和自动化的方向 ...
2024-11-27