
SPSS统计基础---Probit 分析
Probit 分析
此过程度量刺激的强度与对刺激显示出特定响应的个案比例之间的关系。如果您具有二分输出,并认为该输出受某些自变量级别的影响或是由其导致的,并且尤其适合实验数据,则此分析非常有用。使用此过程可以估计引致特定比例的响应所需的刺激强度,例如中位效应剂量。
示例。新型杀虫剂对于杀灭蚂蚁的有效性如何,适用浓度多大?可以执行一项实验,对蚂蚁样本施用不同浓度的杀虫剂,然后记录杀灭的蚂蚁数量以及被施用杀虫剂的蚂蚁数量。通过对这些数据应用Probit 分析,可以确定浓度和杀灭效力之间的关系紧密度,并且可以确定在希望确保杀灭一定比例(例如95%)的蚂蚁时杀虫剂的适当浓度。
统计量。回归系数和标准误、截距和标准误、Pearson 拟合优度卡方、观察的和期望的频率以及自变量有效级别的置信区间。
假设。观察值应是独立的。如果自变量值的数量与观察值的数量相比过多(在某项观察研究中可能遇到这样的情况),则卡方统计量和拟合优度统计量可能无效。
相关过程。Probit 分析与Logistic 回归紧密相关;实际上,如果选择Logit 转换,则此过程最终计算的是Logistic 回归。总的来说,Probit 分析适用于设计的实验,而Logistic 回归更适用于观察研究。输出中的差异反映了这些不同的侧重方面。Probit分析过程报告不同响应频率下有效值的估计值(包括中位效应剂量),而Logistic回归过程报告自变量几率比的估计值。
获取Probit 分析
从菜单中选择:
分析> 回归> Probit...
选择一个响应频率变量。此变量表示对检验刺激表现出响应的个案数。此变量的值不能为负。
选择观察变量总数。此变量表示应用刺激的个案数。此变量的值不能为负,并且不能少于每个个案的响应频率变量的值。根据需要,可以选择“因子”变量。如果选择此变量,请单击定义范围来定义组。
选择一个或多个协变量。此变量包含应用到每个观察的刺激级别。如果要转换协变量,请从“转换”下拉列表中选择一个转换。如果不应用任何转换,并且有一个控制组,则分析中将包含该控制组。
选择Probit 或Logit 模型。
Probit 模型. 对响应比例应用probit 转换(累积标准正态分布函数的逆函数)。
Logit 模型. 对响应比例应用logit(对数几率)转换。
Probit 分析:定义范围
在此对话框中可以指定将分析的因子变量的水平。因子水平必须编码为连续整数,过程将对指定范围中的所有水平进行分析。
Probit 分析:选项
统计量。允许您请求下列可选统计量:频率、相对中位数强度、平行检验以及信仰置信区间。
相关中位数力. 显示每对因子水平的中位数强度比。还显示每个相对中位数强度的95% 置信界限。如果您没有因子变量或具有多个协变量,则相关中位数力不可用。
平行检验. 对所有因子水平具有共同的斜率这一假设的检验。
信仰置信区间. 生成确定的响应概率所必需的代理用量的置信区间。
如果选择了多个协变量,则信仰置信区间和相对中位数强度不可用。只有在选择了因子变量的情况下,相对中位数强度和平行检验才可用。
自然响应频率。允许您指定自然响应频率,即使在没有刺激的情况下也可以。可用选项有“无”、“从数据中计算”和“值”。
从数据中计算. 根据样本数据估计自然响应频率。数据应包含代表控制级别的个案,而该级别的协变量值为0。Probit 使用该控制级别的响应比例来估计自然
响应率以作为初始值。
值. 在模型中设置自然响应率(当您预先知道自然响应率时,选择此项)。输入自然响应比例(该比例必须小于1)。例如,如果当激励为0 时响应在10% 的
时间里发生,则输入0.10。
标准。允许您控制迭代参数估计算法的参数。可以覆盖“最大迭代次数”、“步骤限制”和“最优性容差”的缺省值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10