SPSS超详细操作:分层回归(hierarchical multiple regression)
1、问题与数据
最大携氧能力(maximal aerobic capacity, VO2max)是评价人体健康的关键指标,但因测量方法复杂,不易实现。某研究者拟通过一些方便、易得的指标建立受试者最大携氧能力的预测模型。
目前,该研究者已知受试者的年龄和性别与最大携氧能力有关,但这种关联强度并不足以进行回归模型的预测。因此,该研究者拟逐个增加体重(第3个变量)和心率(第4个变量)两个变量,并判断是否可以增强模型的预测能力。
本研究中,研究者共招募100位受试者,分别测量他们的最大携氧能力(VO2max),并收集年龄(age)、性别(gender)、体重(weight)和心率(heart_rate)变量信息,部分数据如下:
注:心率(heart_rate)测量的是受试者进行20分钟低强度步行后的心率。
2、对问题的分析
研究者拟判断逐个增加自变量(weight和heart_rate)后对因变量(VO2max)预测模型的改变。针对这种情况,我们可以使用分层回归分析(hierarchical multiple regression),但需要先满足以下8项假设:
假设1:因变量是连续变量
假设2:自变量不少于2个(连续变量或分类变量都可以)
假设3:具有相互独立的观测值
假设4:自变量和因变量之间存在线性关系
假设5:等方差性
假设6:不存在多重共线性
假设7:不存在显著的异常值
假设8:残差近似正态分布
那么,进行分层回归分析时,如何考虑和处理这8项假设呢?
3、对假设的判断
3.1 假设1-2
假设1和假设2分别要求因变量是连续变量、自变量不少于2个。这与研究设计有关,需根据实际情况判断。
3.2 假设3-8
为了检验假设3-8,我们需要在SPSS中运行分层回归,并对结果进行一一分析。
(1)点击Analyze→Regression→Linear
出现下图:
(2)将因变量(VO2max)放入Dependent栏,再将自变量(age和gender)放入Independent栏:
解释:因研究者已知性别、年龄与最大携氧能力的关系,我们先把这两个变量放入模型。
(3)点击Next,弹出下图:
解释:大家可能会注意到Independent(s)框中的标签由-Block 1 of 1- 变为-Block 2 of 2-。这说明age和gender变量依旧存在于模型中,在- Block 2 of 2-中,大家可以点击Previous查看。同时,Method栏应设置为“Enter”,一般是SPSS自动设置的;如果不是,也应人工设置为“Enter”。
(4) 将自变量(weight)放入Independent栏
解释:放入weight变量是为了检验加入该变量后对age、gender-VO2max预测模型的影响。
(5)点击Next,弹出下图:
解释:大家可能会注意到Independent(s)框中的标签由-Block 2 of 2- 变为-Block 3 of 3-。同样地,age、gender和weight变量依旧存在于模型中,可以点击Previous查看。Method栏也应设置为“Enter”,如果不是,改为“Enter”。
(6)将自变量(heart_rate)放入Independent栏
解释:放入heart_rate变量是为了检验加入该变量后对age、gender、weight-VO2max预测模型的影响。
(7)点击Statistics,弹出下图:
(8)在Regression Coefficient框内点选Confidence intervals,在Residuals框内点选Durbin-Watson和Casewise diagnosis,并在主对话框内点选R squared change、Descriptives、Part and partial correlations和Collinearity diagnosis
(9) 点击Continue,回到主界面。
(10)点击Plots,弹出下图:
(11)在Standardized Residual Plots对话框中点选Histogram和Normal probability,并点选Produce all partial plots
(12)点击Continue回到主对话框
(13) 点击Save
(14)在Predicted Values框内点选Unstandardized,在Distances框内点选Cook’s和Leverage values,在Residuals框内点选Studentized和Studentized deleted
(15)点击Continue→OK
经过这些操作,Variable View 和Data View对话框中会增加5个变量:
这5个变量分别是未标化预测值(unstandardized predicted values,PRE_1),学生化残差(studentized residuals,SRE_1),学生化删除残差(studentized deleted residuals,SDR_1),Cook距离(Cook's Distance values,COO_1)以及杠杆值(leverage values,LEV_1)。
根据这5个新增变量和其他结果,我们将逐一对假设3-8进行检验。
注意:分层回归对假设3-8的检验过程与多重线性回归基本一致,为避免重复讲解,我们在本章节只介绍基本原理,详细内容请参见多重线性回归分析。
3.2.1 假设3:具有相互独立的观测值
观测值之间相互独立是分层回归的基本假设之一,主要检验的是1st-order autocorrelation,即邻近的观测值(主要是残差)之间没有相关性。我们根据SPSS中的Durbin-Watson检验判断该假设,如果不满足,则需要运用其他模型,如时间序列模型等。
3.2.2 假设4:自变量和因变量之间存在线性关系
分层回归不仅要求因变量与所有自变量存在线性关系,还要求因变量与每一个自变量之间存在线性关系。其中,我们主要通过绘制未标化预测值(PRE_1)和学生化残差(SRE_1)的散点图检验因变量与所有自变量之间的线性关系。
而为检验因变量与每一个自变量之间是否存在线性关系,我们则需要分别绘制每个自变量与因变量的散点图。如果假设4不满足,我们可以尝试进行数据转换或者其他统计方法。
3.2.3 假设5:等方差性
等方差性也可以通过学生化残差(SRE_1)与未标化预测值(PRE_1)之间的散点图进行检验。如果研究结果提示不满足等方差性假设,我们也可以通过一些统计手段进行矫正,如对自变量进行转换或采用加权最小二乘法回归方程等。
3.2.4 假设6:不存在多重共线性
当回归中存在2个或多个自变量高度相关时,就会出现多重共线。它不仅可影响自变量对因变量变异的解释能力,还影响整个分层回归模型的拟合。
为了检验假设6,我们主要关注相关系数(correlation coefficients)和容忍度/方差膨胀因子(Tolerance/VIF)两类指标。一般来说,如果自变量之间的相关系数大于0.7,或者容忍度小于0.1,方差膨胀因子大于10,我们就会怀疑模型存在多重共线性。
3.2.5 假设7:不存在显著的异常值
根据作用方式的不同,分层回归的异常值主要分为离群值(outliers)、强杠杆点(leverage points)和强影响点(influential points)3类。异常的观测值可以符合其中一类或几类。但无论是哪一类都对分层回归的预测能力有着严重的负面影响。好在我们可以通过SPSS检测这些异常值。
其中,(1) 离群值是指实际值与预测值相差较大的数据,可以用Casewise Diagnostics检验和学生化删除残差(SDR_1)两种方法进行检验。(2) 我们通过数据的杠杆值(LEV_1)检测强杠杆点。(3) 而强影响点主要通过Cook距离(COO_1)进行检测。如果存在这些异常值,我们可以根据实际情况判断是否需要剔除或调整。
3.2.6 假设8:残差近似正态分布
在分层回归中,我们可以使用两种方法判断回归残差是否近似正态分布:(1) 带正态曲线的柱状图或P-P图;(2) 根据学生化残差绘制的正态Q-Q图。详细内容参见多重线性回归分析。
4、结果解释
分层回归可以得到3个主要结果:
新增自变量解释因变量变异的比例
根据自变量预测因变量
自变量改变一个单位,因变量的变化情况
为了更好地解释和报告分层回归的结果,我们需要统计以下3个方面:
各模型的比较
模型的拟合程度
回归系数
4.1 各模型的比较
比较不同模型是进行分层回归的主要目的。SPSS输出变量纳入结果,如下:
从Model栏可以看出,本研究共有3个模型:Model 1、Model 2和Model 3。Variables Entered栏显示该研究中每个模型较前一个模型增加的变量。
Model 1是第一个模型,没有前序变量,因此该模型的自变量只有gender和age。Model 2比前一个模型(Model 1)增加了weight变量;Model 3比Model 2增加了heart_rate变量。这3个模型的纳入变量与之前的SPSS操作一致,如下:
必须注意的是,Model 2和Model 3中纳入的变量都是在上一个模型基础上的。比如,Model 3是在Model 2的基础上纳入heart_rate变量,即共纳入age、gender、weight和heart_rate四个变量,而不是heart_rate一个变量,具体解释如下:
4.2 判断分层回归模型的拟合程度
判断分层回归模型拟合程度的指标有很多,我们主要向大家介绍变异的解释程度、R2值在各模型间的变化和模型的统计学意义3个指标。
4.2.1变异的解释程度
分层回归中的每个模型都相当于一个强制纳入变量(Enter method)的多重线性回归模型,具体评价指标也相似:
Measures of model ‘fit’ for the three models: 分别评价本研究中3个模型的拟合程度
R2是多层回归的重要指标,反映自变量解释因变量变异的程度。从上表可以看出,随着自变量数量的增加,模型1-3的R2逐渐增加,分别是0.188、0.427和0.710,提示各模型对因变量的预测能力逐渐加强。
但是分层模型主要是检验增加自变量是否具有统计学意义,如模型2增加了weight变量后R2的变化是否具有统计学意义呢?我们将在4.2.2节为详细大家介绍。
4.2.2R2值在各模型间的变化
为了判断新增变量对回归的影响,我们需要关注下表的右半部分:
Assessing model change:对比模型变化
R Square Change栏显示的是该模型与上一个模型R2的差值,Sig. F Change栏显示的是该差值的统计检验的P值。以Model 1为例,如下:
Initial Model(Model 1):模型1
模型1是初始模型,在空模型的基础上增加了age和gender两个变量。该模型的R2差值(R Square Change栏)和R2值(R Square栏)相同,均为0.188。R2差值具有统计学意义,P<0.001(Sig. F Change栏)。
模型2在模型1的基础上增加了weight变量,R2值的变化情况如下:
Change between Model 1 and Model 2: 对比模型1和模型2
模型2的R2差值为0.239,即模型2的R2值(0.427)与模型1的R2值(0.188)的差。Sig. F Change栏提示,P<0.001,即模型2的R2差值具有统计学意义。
在本研究中,模型2与模型1的差别仅在于weight变量,提示在回归中纳入weight变量后自变量对因变量变异的解释能力增加23.9%(P<0.001),即纳入体重变量对受试者最大携氧能力的预测改善有统计学意义。
解释:如果我们在模型2中增加了不止一个变量,那么R2值的改变就是所有新增变量共同作用的结果,而不是某一个变量的。
模型3在模型2的基础上增加了heart_rate变量,R2值的变化情况如下:
Change between Model 2 and Model 3:对比模型2和模型3
模型3的R2差值为0.283,即模型3的R2值(0.710)与模型2的R2值(0.427)的差。Sig. F Change栏提示,P<0.001,即模型3的R2差值具有统计学意义。提示在回归中纳入heart_rate变量后自变量对因变量变异的解释能力增加28.3%(P<0.001),即纳入心率变量对受试者最大携氧能力的预测改善有统计学意义。
4.2.3 模型的统计学意义
分层回归的每一个模型都相当于一个多重线性回归模型。SPSS输出ANOVA表格中包括对每一个模型的评价,如下:
一般来说,我们习惯性只汇报最终模型的结果(本研究的模型3),如下:
模型3是全模型,纳入gender、age、weight和heart_rate四个变量。结果示,该模型具有统计学意义,F(4,95)=58.078,P<0.001,提示因变量和自变量之间存在线性相关,说明相较于空模型,纳入这四个自变量有助于预测因变量。
注释:如果SPSS输出的结果中“Sig”值为“.000”,代表的是P<0.001,而不是P=0.000。同时,如果P>0.05,我们最好在报告中写清楚具体数值,如P=0.092,从而为读者提供更多的信息。
4.3回归系数
正如前文所述,分层回归模型主要关注的是最终模型,即本研究中的模型3,在对回归系数进行解释时也是如此。
Full model (Model 3):模型3
我们可以按照多重线性回归的分析方法对分层回归系数进行解释。连续变量(如age变量)的回归系数表示自变量每改变一个单位,因变量的变化情况。分类变量(如gender变量)的回归系数表示不同类别之间的差异,详细内容参见多重线性回归。
值得注意的是,我们运行分层回归的主要目的是分析是否有必要增加新的自变量,而不是进行预测,回归系数不是我们主要关注的结果。但是如果在汇报时需要提供回归系数,我们也可以把这部分增加在报告中。
5、撰写结论
5.1 简洁汇报
本研究采用分层回归,分析逐步增加体重和心率变量是否可以提高性别、年龄对最大携氧能力的预测水平。最终模型(模型3)纳入性别、年龄、体重和心率4个变量,具有统计学意义R2=0.710,F(4, 95) = 58.078 (P<0.001),调整R2=0.698。
仅增加体重变量(模型2)后,R2值增加0.239,F(1, 96) = 40.059(P<0.001),具有统计学意义。增加心率变量(模型3)后,R2值增加0.283,F(1, 96) = 92.466(P<0.001),具有统计学意义,具体结果见表1。
表1. 分层回归结果
5.2具体汇报
本研究采用分层回归,分析逐步增加体重和心率变量是否可以提高性别、年龄对最大携氧能力的预测水平。通过绘制部分回归散点图和学生化残差与预测值的散点图,判断自变量和因变量之间存在线性关系。
已验证研究观测值之间相互独立(Durbin-Watson检验值为1.910);并通过绘制学生化残差与未标化的预测值之间的散点图,证实数据具有等方差性。
回归容忍度均大于0.1,不存在多重共线性。异常值检验中,不存在学生化删除残差大于3倍标准差的观测值,数据杠杆值均小于0.2,也没有Cook距离大于1的数值。Q-Q图提示,研究数据满足正态假设。
最终模型(模型3)纳入性别、年龄、体重和心率4个变量,具有统计学意义R2=0.710,F(4, 95) = 58.078 (P<0.001),调整R2 = 0.698。仅增加体重变量(模型2)后,R2值增加0.239,F(1, 96) = 40.059 (P<0.001),具有统计学意义。增加心率变量(模型3)后,R2值增加0.283,F(1, 96) = 92.466 (P<0.001),具有统计学意义,具体结果见表1。
表1.分层回归结果
解释:我们为了尽可能地向大家展示分层回归结果,在表1里纳入了所有可能需要汇报的指标。但在实际工作中,大家可能并不需要汇报这么多,应视情况而定。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20