Python 多线程的实例详解
一)线程基础
1、创建线程:
thread模块提供了start_new_thread函数,用以创建线程。start_new_thread函数成功创建后还可以对其进行操作。
其函数原型:
start_new_thread(function,atgs[,kwargs])
其参数含义如下:
function: 在线程中执行的函数名
args:元组形式的参数列表。
kwargs: 可选参数,以字典的形式指定参数
方法一:通过使用thread模块中的函数创建新线程。
>>> import thread
>>> def run(n):
for i in range(n):
print i
>>> thread.start_new_thread(run,(4,)) #注意第二个参数一定要是元组的形式
53840
1
>>>
2
3
KeyboardInterrupt
>>> thread.start_new_thread(run,(2,))
17840
1
>>>
thread.start_new_thread(run,(),{'n':4})
39720
1
>>>
2
3
thread.start_new_thread(run,(),{'n':3})
32480
1
>>>
2
方法二:通过继承threading.Thread创建线程
方法三:使用threading.Thread直接在线程中运行函数。
import threading
>>> def run(x,y):
for i in range(x,y):
print i
>>> t1 = threading.Thread(target=run,args=(15,20)) #直接使用Thread附加函数args为函数参数
>>> t1.start()
15
>>>
16
17
18
19
二)Thread对象中的常用方法:
1、isAlive方法:
>>> import threading
>>> import time
>>> class mythread(threading.Thread):
def __init__(self,id):
threading.Thread.__init__(self)
self.id = id
def run(self):
time.sleep(5) #休眠5秒
print self.id
>>> t = mythread(1)
>>> def func():
t.start()
print t.isAlive() #打印线程状态
>>> func()
True
>>> 1
2、join方法:
原型:join([timeout])
timeout: 可选参数,线程运行的最长时间
import threading
>>> import time #导入time模块
>>> class Mythread(threading.Thread):
def __init__(self,id):
threading.Thread.__init__(self)
self.id = id
def run(self):
x = 0
time.sleep(20)
print self.id
>>> def func():
t.start()
for i in range(5):
print i
>>> t = Mythread(2)
>>> func()
0
1
2
3
4
>>> 2
def func():
t.start()
t.join()
for i in range(5):
print i
>>> t = Mythread(3)
>>> func()
3
0
1
2
3
4
>>>
3、线程名:
>>> import threading
>>> class mythread(threading.Thread):
def __init__(self,threadname):
threading.Thread.__init__(self,name=threadname)
def run(self):
print self.getName()
>>>
>>> t1 = mythread('t1')
>>> t1.start()
t1
>>>
4、setDaemon方法
在脚本运行的过程中有一个主线程,如果主线程又创建了一个子线程,那么当主线程退出时,会检验子线程是否完成。如果子线程未完成,则主线程会在等待子线程完成后退出。
当需要主线程退出时,不管子线程是否完成都随主线程退出,则可以使用Thread对象的setDaemon方法来设置。
三)线程同步
1.简单的线程同步
使用Thread对象的Lock和RLock可以实现简单的线程同步。对于如果需要每次只有一个线程操作的数据,可以将操作过程放在acquire方法和release方法之间。如:
# -*- coding:utf-8 -*-
import threading
import time
class mythread(threading.Thread):
def __init__(self,threadname):
threading.Thread.__init__(self,name = threadname)
def run(self):
global x #设置全局变量
# lock.acquire() #调用lock的acquire方法
for i in range(3):
x = x + 1
time.sleep(2)
print x
# lock.release() #调用lock的release方法
#lock = threading.RLock() #生成Rlock对象
t1 = []
for i in range(10):
t = mythread(str(i))
t1.append(t)
x = 0 #将全局变量的值设为0
for i in t1:
i.start()
E:/study/<a href="http://lib.csdn.net/base/python" rel="external nofollow" class='replace_word' title="Python知识库" target='_blank' style='color:#df3434; font-weight:bold;'>Python</a>/workspace>xianchengtongbu.py
3
6
9
12
15
18
21
24
27
30
如果将lock.acquire()和lock.release(),lock = threading.Lock()删除后保存运行脚本,结果将是输出10个30。30是x的最终值,由于x是全局变量,每个线程对其操作后进入休眠状态,在线程休眠的时候,Python解释器就执行了其他的线程而是x的值增加。当所有线程休眠结束后,x的值已被所有线修改为了30,因此输出全部为30。
2、使用条件变量保持线程同步。
python的Condition对象提供了对复制线程同步的支持。使用Condition对象可以在某些事件触发后才处理数据。Condition对象除了具有acquire方法和release的方法外,还有wait方法、notify方法、notifyAll方法等用于条件处理。
# -*- coding:utf-8 -*-
import threading
class Producer(threading.Thread):
def __init__(self,threadname):
threading.Thread.__init__(self,name = threadname)
def run(self):
global x
con.acquire()
if x == 1000000:
con.wait()
# pass
else:
for i in range(1000000):
x = x + 1
con.notify()
print x
con.release()
class Consumer(threading.Thread):
def __init__(self,threadname):
threading.Thread.__init__(self,name = threadname)
def run(self):
global x
con.acquire()
if x == 0:
con.wait()
#pass
else:
for i in range(1000000):
x = x - 1
con.notify()
print x
con.release()
con = threading.Condition()
x = 0
p = Producer('Producer')
c = Consumer('Consumer')
p.start()
c.start()
p.join()
c.join()
print x
E:/study/python/workspace>xianchengtongbu2.py
1000000
0
0
线程间通信:
Event对象用于线程间的相互通信。他提供了设置信号、清除信宏、等待等用于实现线程间的通信。
1、设置信号。Event对象使用了set()方法后,isSet()方法返回真。
2、清除信号。使用Event对象的clear()方法后,isSet()方法返回为假。
3、等待。当Event对象的内部信号标志为假时,则wait()方法一直等到其为真时才返回。还可以向wait传递参数,设定最长的等待时间。
# -*- coding:utf-8 -*-
import threading
class mythread(threading.Thread):
def __init__(self,threadname):
threading.Thread.__init__(self,name = threadname)
def run(self):
global event
if event.isSet():
event.clear()
event.wait() #当event被标记时才返回
print self.getName()
else:
print self.getName()
event.set()
event = threading.Event()
event.set()
t1 = []
for i in range(10):
t = mythread(str(i))
t1.append(t)
for i in t1:
i.start()
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21