京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python实现将html表格转换成CSV文件的方法
本文实例讲述了python实现将html表格转换成CSV文件的方法。分享给大家供大家参考。具体如下:
使用方法:python html2csv.py *.html
这段代码使用了 HTMLParser 模块
#!/usr/bin/python
# -*- coding: iso-8859-1 -*-
# Hello, this program is written in Python - http://python.org
programname = 'html2csv - version 2002-09-20 - http://sebsauvage.net'
import sys, getopt, os.path, glob, HTMLParser, re
try: import psyco ; psyco.jit() # If present, use psyco to accelerate the program
except: pass
def usage(progname):
''' Display program usage. '''
progname = os.path.split(progname)[1]
if os.path.splitext(progname)[1] in ['.py','.pyc']: progname = 'python '+progname
return '''%s
A coarse HTML tables to CSV (Comma-Separated Values) converter.
Syntax : %s source.html
Arguments : source.html is the HTML file you want to convert to CSV.
By default, the file will be converted to csv with the same
name and the csv extension (source.html -> source.csv)
You can use * and ?.
Examples : %s mypage.html
: %s *.html
This program is public domain.
Author : Sebastien SAUVAGE <sebsauvage at sebsauvage dot net>
http://sebsauvage.net
''' % (programname, progname, progname, progname)
class html2csv(HTMLParser.HTMLParser):
''' A basic parser which converts HTML tables into CSV.
Feed HTML with feed(). Get CSV with getCSV(). (See example below.)
All tables in HTML will be converted to CSV (in the order they occur
in the HTML file).
You can process very large HTML files by feeding this class with chunks
of html while getting chunks of CSV by calling getCSV().
Should handle badly formated html (missing <tr>, </tr>, </td>,
extraneous </td>, </tr>...).
This parser uses HTMLParser from the HTMLParser module,
not HTMLParser from the htmllib module.
Example: parser = html2csv()
parser.feed( open('mypage.html','rb').read() )
open('mytables.csv','w+b').write( parser.getCSV() )
This class is public domain.
Author: Sébastien SAUVAGE <sebsauvage at sebsauvage dot net>
http://sebsauvage.net
Versions:
2002-09-19 : - First version
2002-09-20 : - now uses HTMLParser.HTMLParser instead of htmllib.HTMLParser.
- now parses command-line.
To do:
- handle <PRE> tags
- convert html entities (&name; and &#ref;) to Ascii.
'''
def __init__(self):
HTMLParser.HTMLParser.__init__(self)
self.CSV = '' # The CSV data
self.CSVrow = '' # The current CSV row beeing constructed from HTML
self.inTD = 0 # Used to track if we are inside or outside a <TD>...</TD> tag.
self.inTR = 0 # Used to track if we are inside or outside a <TR>...</TR> tag.
self.re_multiplespaces = re.compile('\s+') # regular expression used to remove spaces in excess
self.rowCount = 0 # CSV output line counter.
def handle_starttag(self, tag, attrs):
if tag == 'tr': self.start_tr()
elif tag == 'td': self.start_td()
def handle_endtag(self, tag):
if tag == 'tr': self.end_tr()
elif tag == 'td': self.end_td()
def start_tr(self):
if self.inTR: self.end_tr() # <TR> implies </TR>
self.inTR = 1
def end_tr(self):
if self.inTD: self.end_td() # </TR> implies </TD>
self.inTR = 0
if len(self.CSVrow) > 0:
self.CSV += self.CSVrow[:-1]
self.CSVrow = ''
self.CSV += '\n'
self.rowCount += 1
def start_td(self):
if not self.inTR: self.start_tr() # <TD> implies <TR>
self.CSVrow += '"'
self.inTD = 1
def end_td(self):
if self.inTD:
self.CSVrow += '",'
self.inTD = 0
def handle_data(self, data):
if self.inTD:
self.CSVrow += self.re_multiplespaces.sub(' ',data.replace('\t',' ').replace('\n','').replace('\r','').replace('"','""'))
def getCSV(self,purge=False):
''' Get output CSV.
If purge is true, getCSV() will return all remaining data,
even if <td> or <tr> are not properly closed.
(You would typically call getCSV with purge=True when you do not have
any more HTML to feed and you suspect dirty HTML (unclosed tags). '''
if purge and self.inTR: self.end_tr() # This will also end_td and append last CSV row to output CSV.
dataout = self.CSV[:]
self.CSV = ''
return dataout
if __name__ == "__main__":
try: # Put getopt in place for future usage.
opts, args = getopt.getopt(sys.argv[1:],None)
except getopt.GetoptError:
print usage(sys.argv[0]) # print help information and exit:
sys.exit(2)
if len(args) == 0:
print usage(sys.argv[0]) # print help information and exit:
sys.exit(2)
print programname
html_files = glob.glob(args[0])
for htmlfilename in html_files:
outputfilename = os.path.splitext(htmlfilename)[0]+'.csv'
parser = html2csv()
print 'Reading %s, writing %s...' % (htmlfilename, outputfilename)
try:
htmlfile = open(htmlfilename, 'rb')
csvfile = open( outputfilename, 'w+b')
data = htmlfile.read(8192)
while data:
parser.feed( data )
csvfile.write( parser.getCSV() )
sys.stdout.write('%d CSV rows written.\r' % parser.rowCount)
data = htmlfile.read(8192)
csvfile.write( parser.getCSV(True) )
csvfile.close()
htmlfile.close()
except:
print 'Error converting %s ' % htmlfilename
try: htmlfile.close()
except: pass
try: csvfile.close()
except: pass
print 'All done. '
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30