
Python优化技巧之利用ctypes提高执行速度
首先给大家分享一个个人在使用python的ctypes调用c库的时候遇到的一个小坑
这次出问题的地方是一个C函数,返回值是malloc生成的字符串地址。平常使用也没问题,也用了有段时间, 没发现什么异常。
这次在测试中,发现使用这个过程会出现“段错误”,造成程序退出了。
经过排查, 确定问题原因是C函数的返回值问题,ctypes默认的函数返回类型是int类型。
需要在使用中设置返回类型,例如:
func.restype = c_char_p
下面我们就来详细探讨下ctypes的使用小技巧
ctypes 库可以让开发者借助C语言进行开发。这个引入C语言的接口可以帮助我们做很多事情,比如需要调用C代码的来提高性能的一些小型问题。通过它你可以接入Windows系统上的 kernel32.dll 和 msvcrt.dll 动态链接库,以及Linux系统上的 libc.so.6 库。当然你也可以使用自己的编译好的共享库
我们先来看一个简单的例子 我们使用 Python 求 1000000 以内素数,重复这个过程10次,并计算运行时间。
import math
from timeit import timeit
def check_prime(x):
values = xrange(2, int(math.sqrt(x)) + 1)
for i in values:
if x % i == 0:
return False
return True
def get_prime(n):
return [x for x in xrange(2, n) if check_prime(x)]
print timeit(stmt='get_prime(1000000)', setup='from __main__ import get_prime',
number=10)
Output
42.8259568214
下面用C语言写一个的 check_prime 函数,然后把它当作共享库(动态链接库)导入
使用以下命令生成 .so (shared object)文件
gcc -shared -o prime.so -fPIC prime.c
import ctypes
import math
from timeit import timeit
check_prime_in_c = ctypes.CDLL('./prime.so').check_prime
def check_prime_in_py(x):
values = xrange(2, int(math.sqrt(x)) + 1)
for i in values:
if x % i == 0:
return False
return True
def get_prime_in_c(n):
return [x for x in xrange(2, n) if check_prime_in_c(x)]
def get_prime_in_py(n):
return [x for x in xrange(2, n) if check_prime_in_py(x)]
py_time = timeit(stmt='get_prime_in_py(1000000)', setup='from __main__ import get_prime_in_py',
number=10)
c_time = timeit(stmt='get_prime_in_c(1000000)', setup='from __main__ import get_prime_in_c',
number=10)
print "Python version: {} seconds".format(py_time)
print "C version: {} seconds".format(c_time)
Output
Python version: 43.4539749622 seconds
C version: 8.56250786781 seconds
我们可以看到很明显的性能差距 这里 有更多的方法去判断一个数是否是素数
再来看一个复杂点的例子 快速排序
mylib.c
#include <stdio.h>
typedef struct _Range {
int start, end;
} Range;
Range new_Range(int s, int e) {
Range r;
r.start = s;
r.end = e;
return r;
}
void swap(int *x, int *y) {
int t = *x;
*x = *y;
*y = t;
}
void quick_sort(int arr[], const int len) {
if (len <= 0)
return;
Range r[len];
int p = 0;
r[p++] = new_Range(0, len - 1);
while (p) {
Range range = r[--p];
if (range.start >= range.end)
continue;
int mid = arr[range.end];
int left = range.start, right = range.end - 1;
while (left < right) {
while (arr[left] < mid && left < right)
left++;
while (arr[right] >= mid && left < right)
right--;
swap(&arr[left], &arr[right]);
}
if (arr[left] >= arr[range.end])
swap(&arr[left], &arr[range.end]);
else
left++;
r[p++] = new_Range(range.start, left - 1);
r[p++] = new_Range(left + 1, range.end);
}
}
gcc -shared -o mylib.so -fPIC mylib.c
使用ctypes有一个麻烦点的地方是原生的C代码使用的类型可能跟Python不能明确的对应上来。比如这里什么是Python中的数组?列表?还是 array 模块中的一个数组。所以我们需要进行转换
test.py
import ctypes
import time
import random
quick_sort = ctypes.CDLL('./mylib.so').quick_sort
nums = []
for _ in range(100):
r = [random.randrange(1, 100000000) for x in xrange(100000)]
arr = (ctypes.c_int * len(r))(*r)
nums.append((arr, len(r)))
init = time.clock()
for i in range(100):
quick_sort(nums[i][0], nums[i][1])
print "%s" % (time.clock() - init)
Output
1.874907
与Python list 的 sort 方法进行对比
?
import ctypes
import time
import random
quick_sort = ctypes.CDLL('./mylib.so').quick_sort
nums = []
for _ in range(100):
nums.append([random.randrange(1, 100000000) for x in xrange(100000)])
init = time.clock()
for i in range(100):
nums[i].sort()
print "%s" % (time.clock() - init)
Output
2.501257
至于结构体,需要定义一个类,包含相应的字段和类型
class Point(ctypes.Structure):
_fields_ = [('x', ctypes.c_double),
('y', ctypes.c_double)]
除了导入我们自己写的C语言扩展文件,我们还可以直接导入系统提供的库文件,比如linux下c标准库的实现 glibc
import time
import random
from ctypes import cdll
libc = cdll.LoadLibrary('libc.so.6') # Linux系统
# libc = cdll.msvcrt # Windows系统
init = time.clock()
randoms = [random.randrange(1, 100) for x in xrange(1000000)]
print "Python version: %s seconds" % (time.clock() - init)
init = time.clock()
randoms = [(libc.rand() % 100) for x in xrange(1000000)]
print "C version : %s seconds" % (time.clock() - init)
Output
Python version: 0.850172 seconds
C version : 0.27645 seconds
以上都是ctypes的基本技巧,对普通的开发人员来说,基本够用了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09