SPSS实例教程:有序多分类Logistic回归
1、问题与数据
在某胃癌筛查项目中,研究者想了解首诊胃癌分期(Stage)与患者的经济水平的关系,以确定胃癌筛查的重点人群。为了避免性别因素对结论的混杂影响,研究者将性别(Sex)也纳入分析(本例仅为举例说明如何进行软件操作,实际研究中需控制的混杂因素可以更多)。研究者将所有筛查人群的结果如表1,变量赋值如表2。
表1. 原始数据
表2. 变量赋值情况
2、对数据结构的分析
该设计中,因变量为四分类,且分类间有次序关系,针对因变量为分类型数据的情况应该选用Logistic回归,故应采用有序多分类的Logistic回归分析模型进行分析。
有序多分类的Logistic回归原理是将因变量的多个分类依次分割为多个二元的Logistic回归,例如本例中因变量首诊胃癌分期有1-4期,分析时拆分为三个二元Logistic回归,分别为(1 vs 2+3+4) 、(1+2 vs 3+4)、(1+2+3 vs 4),均是较低级与较高级对比。需注意的是,有序多分类Logistic回归的假设是,拆分后的几个二元Logistic回归的自变量系数相等,仅常数项不等。其结果也只输出一组自变量的系数。
因此,有序多分类的Logistic回归模型中,必须对自变量系数相等的假设进行检验(又称平行线检验)。如果不满足平行线假设,则考虑使用无序多分类Logistic回归或其他统计方法。
3、SPSS分析方法
(1)数据录入SPSS
首先在SPSS变量视图(Variable View)中新建四个变量:ID代表患者编号,Sex代表性别,Income代表收入水平,Stage代表首诊胃癌分期。赋值参考表1。然后在数据视图(Data View)中录入数据。
(2)选择Analyze → Regression → Ordinal Logistic
(3)选项设置
将因变量Stage放入因变量(Dependent)位置,自变量性别(Sex)、收入水平(Income)为分类变量,故放入因子(Factors)位置。若研究中还有连续型变量需要调整,则放入协变量(Covariate)位置。
点击输出(Output)选项,勾选平行线检验(Test of parallel lines)。其余选项维持默认。点击确定(OK)。
4、结果解读
(1)Case Processing Summary
给出的是数据的一般情况,这里不进行介绍。
(2)模型拟合优度检验
有两个,一个是似然比检验结果(Model Fitting Information).该检验的原假设是所有纳入自变量的系数为0,P(Sig.)<0.001,说明至少一个变量系数不为0,且具有统计学显著性。也就是模型整体有意义。
另一个结果是拟合优度检验(Goodness-of-Fit)结果,提供了Pearson卡方和偏差(Deviance)卡方两个检验结果。但是,这两个检验结果不如上图的似然比检验结果稳健,尤其是纳入的自变量存在连续型变量时,因此推荐以似然比检验结果为准。
(3)伪决定系数(Pseudo R-Square)
对于分类数据的统计分析,一般情况下伪决定系数都不会很高,对此不必在意。
(4)参数估计(Parameter Estimates)
阈值(Threshold)对应的Stage=1,2,3三个估计值(Estimate)分别是本次分析中拆分的三个二元Logistic回归的常数项。位置(Location)中Sex和Income变量对应的参数估计值为自变量的估计值。其中Income为多分类,在分析中被拆分成了三个哑变量(即Income 取值1、2、3),分别与Income=4的组进行对比。且有序多分类Logistic回归假定拆分的多个二元回归中自变量系数均相等,因此结果只给出了一组自变量系数。
Income=1系数估计值(Estimate)为-1.617意味着,在调整性别变量的情况下,Income=1(即收入水平最低)的组,相比于Income=4(收入水平最高)的组,初诊胃癌分期至少低一个等级的可能性是exp(-1.617)=0.198倍。其他系数解释相同。这说明,收入水平低的人群,其初诊胃癌时病情更严重。
Sex变量系数无统计学意义(P=0.428),如果没有其他证据证明不同性别的初诊胃癌分期有区别,那么从模型精简的角度考虑,应当将Sex变量从模型中去掉再次进行回归,得到收入水平的参数估计值。如果研究者比较肯定不同性别初诊胃癌分期会产生区别,那么即使在本研究中其系数无统计学意义也应保留在模型中(因为无统计学意义有可能是因为样本量小造成的,并不能说明该变量不产生影响)。本研究中予以保留。
(5)平行线假设检验(Test of Parallel Lines)
该检验的原假设是三个二元Logistic回归自变量系数相等,检验P(Sig.)值为0.052,不拒绝原假设,可以认为假设成立,可以使用多重有序Logistic回归。如果将参数无统计学意义的Sex变量去掉,会发现平行线假定检验P值会增大(P=0.175)(是否去掉Sex变量重回归,取决于是否有充足研究证据证明Sex是一个混杂变量,如果是,Sex变量应保留在模型中)。
5、结果汇总
胃癌患者的初诊分期与患者的收入水平有关。低等收入、中等收入与中高等收入人群与高等收入人群相比,初诊胃癌分期低至少一个等级的可能性分别为0.198(P<0.001)、0.310(P<0.001)、0.640(P=0.071)倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30