大数据时代你知道数据财产权归属于谁吗
当前,大数据产业风生水起,走到哪里都有人谈大数据。但越接触大数据,我们就越担心,它到底是让我们生活得更好的"阿拉丁神灯",还是会释放无数危险的"潘多拉魔盒"?
很多人都并未意识到,自己头顶依然悬着一把法律之剑。
目前,欧盟已经出台了苛刻的数据保护条例,美国也对出售客户数据的运营商施以重罚,那么,还处在萌芽状态的中国大数据行业,究竟将向何处去?是先放水养鱼,让产业发展和数据应用游走于现行法律法规的边缘;还是尽快修改和出台法律法规,尽可能与技术发展相匹配?在这个过程里,我们还有太多的法律问题需要考虑。
首先,现有法律限制的是什么样的数据交易,什么数据才是可交易的,法律保护的是客户隐私数据,还是数据的全部属性?
数据是有很多属性和分类规则,用户的个人数据除了客户资料之外,还包括用户数据,还有平台记录的与用户有关的行为,而法律主要禁止与个人隐私有关的部分属性交易。所以,不能将数据简单等同于个人信息和隐私(法律啥都保护,这个同前面一样,换个角度说妥当,法律禁止的是什么)。
因此,原则上无害于个人,不涉及隐私,不能被辨析到客户个体,那么数据的获取、交易甚至开放,与现行法律的基本原则不相冲突。所以说,在数据交易前,需要对数据做脱敏处理,或者匿名,或者打码,或者隐去,才能继续对"不具有个人识别性"的数据或属性进行交易。
但是,数据的哪些属性不具有个人识别性呢?在实际案例中,很多客户的隐私属性是通过分析识别出来的。从技术角度看,无论是海量数据的信息挖掘,还是不同属性的交叉分析,都可能把看似不泄密的数据,转化生成能够辨识客户的隐私信息。
客户信息不能被直接辨识出来,是不是就等同于去除了个人身份属性?通过技术手段能够间接导致将个人的数据甚至个人不愿为人所知的信息被披露,这样的数据泄露算不算侵犯个人的权益?甚至于,企业机密和国家安全都可能因为大数据的挖掘和披露,面临新的威胁。
对这些技术问题,法律专家并不熟悉,因此在讨论时往往被忽略了。
其二,经过加工之后处理的数据财产权,到底是归属于数据的生产者,还是原始数据的拥有者?
有的人认为:大数据源于对个人数据和信息的再利用,之后虽通过技术加工处理,但数据的产权还应该归属于个人。
另一种观点是:大数据应用就像开矿一样,如果没有企业的运作和投入,数据就不能产生应有的价值。企业投入巨资,为数据的采集、识别、存储、分析,买了那么多服务器和存储设备,资源投入几十亿,才将数据生产出来。因此,数据的所有权应该属于数据的生产企业,并拥有从中汲取收益的权利。
当然,对于用户自己填写的信息,用户与用户之间的行为,用户在平台留下的印记,这些不同情况下,处理的方式并不一样。比如如果一开始财产权就是共有的,那么后面只要不影响用户、不能识别出是谁,企业就可以利用。
还有一种比较客观中立的观点:为推动大数据的发展,应该允许进行数据加工的企业获得部分权利。例如,对用户数据进行匿名处理后,企业可以豁免个人数据保护法规定的相关的义务,这就意味着企业不必再征得用户的同意,就拥有了对数据的利用权利等等。
但通过这种方式获得权利的同时,企业也需要承担相应的义务。还以匿名处理为例,增加的义务应该包括:
(1)要确保数据始终处于匿名状态;
(2)对数据的匿名安全性作出评估,如果数据交易的对象具备对数据复原身份属性的能力,则应当限制此类交易。
(3)在交易协议中,需要通过协议来明确交易各方对于数据安全的责任,尤其约束交易方不得再进行身份识别性的利用。
其三,大数据的经营者们,看懂这些安全法律防范手段了么?
针对性营销的合法性问题:能否在识别客户身份的基础上开展市场营销?这个原本我看来天经地义的行为,居然并不一定合法,这让我大跌眼镜。
大数据营销中,用得最多的就是精准营销。数据交易中,最值钱的也是个人数据。我们日常分析中做的客户画像,目的就是给海量客户分群、打标签,然后针对性地开展定向营销和服务。
然而在一些激进的法律人士认为,如果利用用户的个人信息(比如年龄、性别、职业等)进行营销,必须事先征得用户的同意;如果向用户发送广告信息,如果用户反对,下次再发属于违法。
这么听下来,如果真要严格执法,是不是现在运营商、BAT做的大数据精准营销就全废了?众多希望通过数据交易获取客户信息的企业,也完全失去了商业前景?
如果说,前两个问题要靠进一步界定范围来解决的话,这个问题简直就是针锋相对,完全无解了。
其实精准营销模式在传统商业场景下,也是存在的,合理的。而且中国整体环境还是支持大数据的发展的,甚至由政府牵头开放数据交易。如果针对个人客户的定向营销无法施行,那么大数据的商业价值就只剩下海量数据的宏观分析,大规模数据的综合运用,虽然这并非没有空间(比如导航软件依靠车辆位置信息,计算出路况与大家分享;运营商根据用户真实使用情况,形成终端市场分析报告),但商业价值必然大打折扣,大数据的故事真不好讲了。
从宏观来说,法律滞后于发展是常态,真正法律的游戏规则最终会由个案创设,在碰撞中完善。好在,我们国家的法制建设还有相当长的路要走。
在野蛮生长主导的中国互联网领域,相信大数据的发展前景会先于欧美,好于国企,在试错与博弈中,迎接曙光。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13