大数据当然需要大量、海量的数据,但究竟是不是有些研究者和论者所说的无限数据,是一个重大疑问。
要懂得从大数据中还原数据真实,《决战大数据:驾驭未来商业的利器》一书传达的这个观点给笔者留下了深刻印象。大数据当然需要大量、海量的数据,但究竟是不是有些研究者和论者所说的无限数据,是一个重大疑问。信息搜集需要成本,还将面临用户隐私意识等障碍。更大的成本来源于存储和分析。
信息和数据分布从来就遵循幂律特点,如果数据挖掘以拒绝遗漏为原则,将产生大量的无意义劳动消耗,因为根据一部分数据其实就可以得出足够推导出80%-90%的结论。再者,大数据分析的重要意义在于改善实时分析,对数据搜集及处理速度有很高的要求,譬如电商企业不得不切实提高与用户的有效互动,要尽可能依据掌握并不全面的用户数据给出推荐,并就疑难及时响应。相反,如果数据处理和响应总带有迟滞性,企业希望搜集到足够的、全面的用户数据再给予响应,就必然错过时机。
海量数据还可能包含大量看上去彼此矛盾,甚至根本就带有误导性的数据内容。《决战大数据:驾驭未来商业的利器》一书的作者是阿里巴巴集团商业智能部副总裁、数据委员会会长车品觉,他在书中描绘了消费者通过智能手机等终端购物的一种常见场景:消费者早上看到某款好看的衣服,想要购买,在网上搜出大批量的相关商品;正在挑选时,被叫去开会,在开会时打开手机应用,发现了有诱惑力的促销广告,就下单购买了另外一类商品(比如手机)。
这起场景中,消费者先后使用了手机端和PC端,如果均保持同一个用户名的登录状态,其搜索数据和最终购买数据汇集在一起显然会让许多数据分析师抓狂。如果企业要求数据分析师从这些数据挖掘、还原用户的真实需求,难度可想而知。如果这一个消费者在手机端、PC端还使用不同用户名,又该搜集哪些、多少数据,才能做到辨识其身份?
车品觉指出,“大数据的真正价值是将数据用于形成主动收集数据的良性循环,以带动更多的数据进入这个自循环中”。要做到这一点必然是困难的,上述场景非常常见,直接原因是普通消费者使用互联网具有多场景,完全可能灵活的轮换使用PC端、手机端、智能穿戴设备等终端;往深了说,移动互联网时代,很多人的注意力是高度涣散的。许多时候,用户可能长时间停留于某个页面,这并不能表明其一定是在专心停留阅读,更大的可能在于消费者这时有事走开了,或者切换到别的终端界面。因此,数据挖掘分析必须承认这种手段的相对有效性、局限性。
书中提出,数据具有5大价值:识别与串联价值(根据大数据中的核心数据对用户真实身份、真实行为进行还原)、描述价值(在特定框架内找出核心用户、紧密购买行为数据)、时间价值(在特定时间段分析历史数据)、预测价值、产出数据的价值。这其中提到的特定框架,也就是说从海量数据中根据关联性,提取核心有用数据的范围。比如一个企业要判断是否继续使用导航网站的广告,就要明确导航网站引进的新老用户比、引进的新老用户的投入产出比和转化率、推断一旦撤去广告会带来的流失影响,还要对竞争对手进行行为分析预测(对方可能加强导航广告投入),这些限定因素将使得数据提取及后续分析就不会毫无章法。
这本书第二部分对阿里巴巴的大数据实践作了基本介绍。阿里巴巴成长到今天的规模,还能继续驾驭宏大的产品线和业务范围,电商行业内外有识之士都认为这应归功于阿里巴巴能够很好的实现数据化运营,可以通过海量数据成功实现即便是细小范围内的业务对比、细分及趋势预估。车品觉分享指出,阿里巴巴数据化运营落地是从“人”做起,利用好了“混、通、晒”三板斧。“混”就是让数据分析师与业务部门的人经常“混”在一起,这是确保两大部门培养商业和数字直觉的前提;“通”就是打通“混”的数据;在此基础上,让数据得以最有效的获取、使用、分享、协同、连接和组合,就是“晒”。
车品觉认为,2011年起,阿里巴巴已经开始从数据化运营向运营数据发展,形成了良性循环,走到了运营数据的外三板斧“存、管、用”。“存”指的是搜集并存储有效数据;“管”涵盖了数据的安全管理、让数据更趋准确稳定、更好运用数据等范畴;“用”,就是要从数据本身实现分裂和重组,推动颠覆性创新。书中就此对“用”这一层次,结合作者长期以来的从业实践及对京东、一号店等其他知名电商企业运营经验的观察,展开了颇为深入的梳理剖析。文章来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22