Python的re模块(Regular Expression 正则表达式)提供各种正则表达式的匹配操作,在文本解析、复杂字符串分析和信息提取时是一个非常有用的工具,下面我主要总结了re的常用方法
1.re的简介
使用python的re模块,尽管不能满足所有复杂的匹配情况,但足够在绝大多数情况下能够有效地实现对复杂字符串的分析并提取出相关信息。python 会将正则表达式转化为字节码,利用 C 语言的匹配引擎进行深度优先的匹配。
代码如下:
import re
print re.__doc__
可以查询re模块的功能信息,下面会结合几个例子说明。
2.re的正则表达式语法
正则表达式语法表如下:
正则表达式特殊序列表如下:
3.re的主要功能函数
常用的功能函数包括:compile、search、match、split、findall(finditer)、sub(subn)
compile
re.compile(pattern[, flags])
作用:把正则表达式语法转化成正则表达式对象
flags定义包括:
re.I:忽略大小写
re.L:表示特殊字符集 \w, \W, \b, \B, \s, \S 依赖于当前环境
re.M:多行模式
re.S:' . '并且包括换行符在内的任意字符(注意:' . '不包括换行符)
re.U: 表示特殊字符集 \w, \W, \b, \B, \d, \D, \s, \S 依赖于 Unicode 字符属性数据库
search
re.search(pattern, string[, flags])
search (string[, pos[, endpos]])
作用:在字符串中查找匹配正则表达式模式的位置,返回 MatchObject 的实例,如果没有找到匹配的位置,则返回 None。
match
re.match(pattern, string[, flags])
match(string[, pos[, endpos]])
作用:match() 函数只在字符串的开始位置尝试匹配正则表达式,也就是只报告从位置 0 开始的匹配情况,而 search() 函数是扫描整个字符串来查找匹配。如果想要搜索整个字符串来寻找匹配,应当用 search()。
下面是几个例子:
例:最基本的用法,通过re.RegexObject对象调用
复制代码 代码如下:
#!/usr/bin/env python
import re
r1 = re.compile(r'world')
if r1.match('helloworld'):
print 'match succeeds'
else:
print 'match fails'
if r1.search('helloworld'):
print 'search succeeds'
else:
print 'search fails'
说明一下:r是raw(原始)的意思。因为在表示字符串中有一些转义符,如表示回车'\n'。如果要表示\表需要写为'\\'。但如果我就是需要表示一个'\'+'n',不用r方式要写为:'\\n'。但使用r方式则为r'\n'这样清晰多了。
例:设置flag
复制代码 代码如下:
#r2 = re.compile(r'n$', re.S)
#r2 = re.compile('\n$', re.S)
r2 = re.compile('World$', re.I)
if r2.search('helloworld\n'):
print 'search succeeds'
else:
print 'search fails'
例:直接调用
代码如下:
if re.search(r'abc','helloaaabcdworldn'):
print 'search succeeds'
else:
print 'search fails'
split
re.split(pattern, string[, maxsplit=0, flags=0])
split(string[, maxsplit=0])
作用:可以将字符串匹配正则表达式的部分割开并返回一个列表
例:简单分析ip
代码如下:
#!/usr/bin/env python
import re
r1 = re.compile('W+')
print r1.split('192.168.1.1')
print re.split('(W+)', '192.168.1.1')
print re.split('(W+)', '192.168.1.1', 1)
结果如下:
['192', '168', '1', '1']
['192', '.', '168', '.', '1', '.', '1']
['192', '.', '168.1.1']
findall
re.findall(pattern, string[, flags])
findall(string[, pos[, endpos]])
作用:在字符串中找到正则表达式所匹配的所有子串,并组成一个列表返回
例:查找[]包括的内容(贪婪和非贪婪查找)
代码如下:
#!/usr/bin/env python
import re
r1 = re.compile('([.*])')
print re.findall(r1, "hello[hi]heldfsdsf[iwonder]lo")
r1 = re.compile('([.*?])')
print re.findall(r1, "hello[hi]heldfsdsf[iwonder]lo")
print re.findall('[0-9]{2}',"fdskfj1323jfkdj")
print re.findall('([0-9][a-z])',"fdskfj1323jfkdj")
print re.findall('(?=www)',"afdsfwwwfkdjfsdfsdwww")
print re.findall('(?<=www)',"afdsfwwwfkdjfsdfsdwww")
finditer
re.finditer(pattern, string[, flags])
finditer(string[, pos[, endpos]])
说明:和 findall 类似,在字符串中找到正则表达式所匹配的所有子串,并组成一个迭代器返回。同样 RegexObject 有:
sub
re.sub(pattern, repl, string[, count, flags])
sub(repl, string[, count=0])
说明:在字符串 string 中找到匹配正则表达式 pattern 的所有子串,用另一个字符串 repl 进行替换。如果没有找到匹配 pattern 的串,则返回未被修改的 string。Repl 既可以是字符串也可以是一个函数。
例:
代码如下:
#!/usr/bin/env python
import re
p = re.compile('(one|two|three)')
print p.sub('num', 'one word two words three words apple', 2)
subn
re.subn(pattern, repl, string[, count, flags])
subn(repl, string[, count=0])
说明:该函数的功能和 sub() 相同,但它还返回新的字符串以及替换的次数。同样 RegexObject 有:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19