Python的re模块(Regular Expression 正则表达式)提供各种正则表达式的匹配操作,在文本解析、复杂字符串分析和信息提取时是一个非常有用的工具,下面我主要总结了re的常用方法
1.re的简介
使用python的re模块,尽管不能满足所有复杂的匹配情况,但足够在绝大多数情况下能够有效地实现对复杂字符串的分析并提取出相关信息。python 会将正则表达式转化为字节码,利用 C 语言的匹配引擎进行深度优先的匹配。
代码如下:
import re
print re.__doc__
可以查询re模块的功能信息,下面会结合几个例子说明。
2.re的正则表达式语法
正则表达式语法表如下:
正则表达式特殊序列表如下:
3.re的主要功能函数
常用的功能函数包括:compile、search、match、split、findall(finditer)、sub(subn)
compile
re.compile(pattern[, flags])
作用:把正则表达式语法转化成正则表达式对象
flags定义包括:
re.I:忽略大小写
re.L:表示特殊字符集 \w, \W, \b, \B, \s, \S 依赖于当前环境
re.M:多行模式
re.S:' . '并且包括换行符在内的任意字符(注意:' . '不包括换行符)
re.U: 表示特殊字符集 \w, \W, \b, \B, \d, \D, \s, \S 依赖于 Unicode 字符属性数据库
search
re.search(pattern, string[, flags])
search (string[, pos[, endpos]])
作用:在字符串中查找匹配正则表达式模式的位置,返回 MatchObject 的实例,如果没有找到匹配的位置,则返回 None。
match
re.match(pattern, string[, flags])
match(string[, pos[, endpos]])
作用:match() 函数只在字符串的开始位置尝试匹配正则表达式,也就是只报告从位置 0 开始的匹配情况,而 search() 函数是扫描整个字符串来查找匹配。如果想要搜索整个字符串来寻找匹配,应当用 search()。
下面是几个例子:
例:最基本的用法,通过re.RegexObject对象调用
复制代码 代码如下:
#!/usr/bin/env python
import re
r1 = re.compile(r'world')
if r1.match('helloworld'):
print 'match succeeds'
else:
print 'match fails'
if r1.search('helloworld'):
print 'search succeeds'
else:
print 'search fails'
说明一下:r是raw(原始)的意思。因为在表示字符串中有一些转义符,如表示回车'\n'。如果要表示\表需要写为'\\'。但如果我就是需要表示一个'\'+'n',不用r方式要写为:'\\n'。但使用r方式则为r'\n'这样清晰多了。
例:设置flag
复制代码 代码如下:
#r2 = re.compile(r'n$', re.S)
#r2 = re.compile('\n$', re.S)
r2 = re.compile('World$', re.I)
if r2.search('helloworld\n'):
print 'search succeeds'
else:
print 'search fails'
例:直接调用
代码如下:
if re.search(r'abc','helloaaabcdworldn'):
print 'search succeeds'
else:
print 'search fails'
split
re.split(pattern, string[, maxsplit=0, flags=0])
split(string[, maxsplit=0])
作用:可以将字符串匹配正则表达式的部分割开并返回一个列表
例:简单分析ip
代码如下:
#!/usr/bin/env python
import re
r1 = re.compile('W+')
print r1.split('192.168.1.1')
print re.split('(W+)', '192.168.1.1')
print re.split('(W+)', '192.168.1.1', 1)
结果如下:
['192', '168', '1', '1']
['192', '.', '168', '.', '1', '.', '1']
['192', '.', '168.1.1']
findall
re.findall(pattern, string[, flags])
findall(string[, pos[, endpos]])
作用:在字符串中找到正则表达式所匹配的所有子串,并组成一个列表返回
例:查找[]包括的内容(贪婪和非贪婪查找)
代码如下:
#!/usr/bin/env python
import re
r1 = re.compile('([.*])')
print re.findall(r1, "hello[hi]heldfsdsf[iwonder]lo")
r1 = re.compile('([.*?])')
print re.findall(r1, "hello[hi]heldfsdsf[iwonder]lo")
print re.findall('[0-9]{2}',"fdskfj1323jfkdj")
print re.findall('([0-9][a-z])',"fdskfj1323jfkdj")
print re.findall('(?=www)',"afdsfwwwfkdjfsdfsdwww")
print re.findall('(?<=www)',"afdsfwwwfkdjfsdfsdwww")
finditer
re.finditer(pattern, string[, flags])
finditer(string[, pos[, endpos]])
说明:和 findall 类似,在字符串中找到正则表达式所匹配的所有子串,并组成一个迭代器返回。同样 RegexObject 有:
sub
re.sub(pattern, repl, string[, count, flags])
sub(repl, string[, count=0])
说明:在字符串 string 中找到匹配正则表达式 pattern 的所有子串,用另一个字符串 repl 进行替换。如果没有找到匹配 pattern 的串,则返回未被修改的 string。Repl 既可以是字符串也可以是一个函数。
例:
代码如下:
#!/usr/bin/env python
import re
p = re.compile('(one|two|three)')
print p.sub('num', 'one word two words three words apple', 2)
subn
re.subn(pattern, repl, string[, count, flags])
subn(repl, string[, count=0])
说明:该函数的功能和 sub() 相同,但它还返回新的字符串以及替换的次数。同样 RegexObject 有:
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21