做好公司各部门数据报表支撑的几个简单思维
越来越多的数据,越来越多的需求,越来越多的不满意
如今,大数据和数据分析的概念相当普及,从基层到管理层,从IT到业务,都深知“数据化管理”、“数据决策”的重要性。越多重视,压力也就越多,导致信息中心和数据部门往往处于进退两难的状态:
数据变多,需求变多,工作价值得不到体现,内部疲于应付。
提供了数据,但需求多样变更极快,无法满足各方需求,内部怨言层出。
如何做好面向全公司的数据支撑,哪怕只是简单的报表提供,其实也是一件复杂且考验思维逻辑的事。
作为曾经一度经历过的表哥,本着吐槽加总结加吹牛的原则,汇总下我在梳理并重新规划公司数据支撑体系时的一些思路,纪念下曾经看指标看瞎的某年5月。
管理思维:数据支撑体系不仅仅是指标体系,还有更开阔的管理逻辑
数据报表的工作只是在整理数据吗?当然不是,数据的整合和展现最终都是为了经营决策的,报表体系的背后逻辑应反映整个公司的经营结果和经营方法。
做报表的,虽然事务工作多,但还是要抬起头来,系统思考一下,报表的路该怎么走? 阿里提出了“小前台,大中台”的概念,实际道理是相通的。报表中台对于报表人员的综合素质要求很高,既要有宽广的业务视野,也要有深厚的数据沉淀,辅以沟通协调能力,造诣甚至远超一般的业务人员。
一旦想清楚这个问题,你就知道你的数据体系必须要和公司目前的经营状况和当前工作方向紧密联系,所以你的数据工作的方向也就呼之欲出了:
方向一:公司目前是什么样的基本状态?——销售额、利润、行业份额,用户规模……
方向二:公司目前的市场竞争形势是怎样的?—— 新增份额、净增份额,净收益……
方向三:就目前形势,公司需要抓住的用户群来源在哪里?——各渠道新增用户价值转换率、各渠道用户价值分层、各渠道投入产出比、会员渗透率、存量用户重复购买率……
方向四:就目前形势,公司推出的核心产品有哪些?——核心产品销售达成率、核心要产品渠道渗透率、核心产品重复购买率……
方向五:就目前形势,公司采用什么样的管理方法和工具?—— OKR目标、KPI体系、销售经理管理指标体系、客户经理管理指标体系、CRM系统、OA系统、EPR系统……
在梳理过程中,会发现对应到任何一个整体业务的分析,需要提供的已经远不只是业务结果那么简单,还包括各种管理和执行数据。
简化思维:数据不是越全越好,主次突出,重点聚焦是王道
确定好数据的大方向后,接下来便是细化分析每个数据方向的具体指标体系,以及确定细分的程度。
这个时候,最容易犯的错误便是开始把所有用到的、想到的全部罗列并设计进去,建立一个所谓大而全的内容。我始终认为,真正的报表是为企业开发的,业务人员只是报表的需求提出者,因此,还需要去理解报表提出的背景,哪些是这张报表的用户,你需要尊重提出报表需求的人员,但对于报表开发要有自己的想法和主导权。一味强调广而全,不仅会让执行者无法聚焦工作重点,而且会让数据部门自身工作量大增,吃力不讨好。
所以,在明确数据需求的大方向基础上制定详细的数据体系时,一定要时刻提醒自己,重点是什么?
一、不同的指标要有重点
比如在产品运营指标体系中,如果已开始投放(电商),需要积累数据,重点关注流量指标,例如UV、PV、渠道来源、用户线索、浏览量、产品浏览量排行、页面跳失率、顾客评价指数、转化率等等。
而如果运营了一段时间,市场已经成熟,首要的任务是通过数据分析提高销售额。此阶段需要重点监测追踪流量和销售指标,例如访客数、浏览量、转化率,以及新增会员数、会员的流失率、客单价、ROI、动销率、库存天数、销售额等。
若行业份额较小,以拓展为主,那除了新增份额、净增份额常见指标外,新增抢夺指标方面需往下衍生新增用户存活率、浏览用户转换率、新增用户价值分层等细化体系,保有指标设计则相对简单。
而如果行业份额已经较大,以保有为主,那新增相关指标则相对可以简单,而保有指标除用户保有率、会员活跃率等常见指标外,还需往下衍生合约捆绑率,会员忠诚度、积分计划活跃度等指标。
二、相同的指标要有侧重
同样以用户保有指标为例,用户保有率和用户流失率其实是同样作用的指标,一方面是选择其一即可。另一方面是,选择哪个,其实放到实际使用中,会有微妙的差别。
如果采用用户保有率指标,往下衍生是业务层面的合约捆绑率、用户活跃率、会员渗透率等积极导向指标,注重营销执行。如果现在用户流失率,往下衍生是用户触店但无消费率、用户沉默率、用户直流流失率、流失用户画像特征等,导向为预警关怀。
三、指标的细分,不需要过于庞杂
一般而言,过程三级,执行三级,就已经足够定位问题及全面展现情况。
逻辑关系:不仅仅是分类,更是反映业务之间的关联
一、数据选择逻辑:
为什么业务部门提出一项数据的要求后,往往会接二连三的提出其他数据需求?其实他们也是在试图尝试寻找某个数据背后的原因及可能。
在设计报表体系过程中,不仅仅只是分类,而应该考虑到指标间的关联,在设计过程中就应该加入业务分析的思维,比如分析者看到这个数据会联想到其他哪些数据来探究原因?
我在当初利用帆软报表(FineReport)设计整个报表体系的时候,常用的就是“结果指标——过程指标——执行指标”三层逻辑结构。结果指标由过程指标决定,而过程指标由结果指标决定。
这种逻辑不仅在运营数据上适用,在管理指标上也同样适用。比如KPI体系是结果,渠道任务目标管理系统是过程,渠道经理/客户经理监督体系是执行。
二、数据呈现逻辑:
确定好指标内容和指标逻辑后,就是数据呈现了。这方面,之前在如何设计企业内部的数据平台?中就已经总结了,其实就是利用“分析报表—管理报表——基础类查询报表”三种层级展示,实现从宏观到微观,从上而下定位问题的呈现逻辑。
对于笔者而言,我设计的方式是站在“分析报表—管理报表”维度上,以主题为维度切入,设计全报表。这样就可以直接从分析报表找到该主题发展的短板,从管理报表上找到导致该短板的主要原因,最后才去分析单报表。
以上是我对于整个报表体系建设的 一点思考感悟,但是实际操作过程中也并没有这么理想,仍然需要根据具体情况具体分类具体设计。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21