数据分析中的Excel、R、Python、SPSS、SAS和SQL
作为一直想入门数据分析的童鞋们来说,如何选定一门面向数据分析的编程语言或工具呢?注意是数据分析,而不是大数据哦,数据分析是基础了。
数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而被提到频率最高的如Excel、R、Python、SPSS、SAS、SQL等。那么,这些工具本身到底有什么特点呢,应该如何合理的使用来解决数据分析的各种问题?
最简单的是EXCEL,它不仅是简单的而且是必备的。正所谓初级学图表,中级学函数透视表,高级学习VBA。EXCEL功能的强大只有那些正真学过它的人才能知道,我们反对任何关于EXCEL复杂,不实用的说法。在学完VBA之后,EXCEL几乎能解决你在日常工作中遇到的所有问题。EXCEL是你成为数据分析师的必备条件。
对于一个初级的数据分析师来说,刚开始如果能精通SQL与Excel再会点SPSS之类的就差不多了。SPSS对用户的要求是只要会点击菜单就可以了,有编程窗口但是一般没人用,用户多是受到过一些统计训练的,但不需要高深的分析能力,市场调研用的比较多,统计专业的学生一般要求掌握。
再往后,你可能就需要精通一门统计分析软件了,一般说来如果是互联网行业可能R语言是最为流行,因为R语言是开源的,不过上手还是需要长期的学习;SPSS界面友好型,不过一般是市场研究用的比较多,如果你会用SPSS编程,其实功能还是比较强大的,建议如果想先练手可以学这个,上手快;SAS一般是金融企业特别是银行业和医学统计,银行业人员有一些是用SAS做统计,一般是银行业内部人做的,另一种是给银行业做数据挖掘的公司,不过正版一年也要上百万,不是土豪也用不起,而且SAS学习没人指导很难学;所以看童鞋们的选择,想在传统或者咨询公司做的SPSS比较合适,想去金融特别是银行业SAS不错,想进互联网公司学R语言可能是比较明智。
再就是Python。Python在这些工具里面是综合功能最强大的,但是这些功能分散在第三方库里面,没有得到有机的整合,所以学习成本还是比较高的。Python与R不同,Python是一门多功能的语言。数据统计是更多是通过第三方包来实现的。具体来说,常用的Python在统计上面的Package有这样一些:
1、Numpy与Scipy。这两个包是Python之所以能在数据分析占有一席之地的重要原因。其中Numpy封装了基础的矩阵和向量的操作,而Scipy则在Numpy的基础上提供了更丰富的功能,比如各种统计常用的分布和算法都能迅速的在Scipy中找到。
2、Matplotlib。这个Package主要是用来提供数据可视化的,其功能强大,生成的图标可以达到印刷品质,在各种学术会议里面出镜率不低。依托于Python,可定制性相对于其他的图形库更高。还有一个优点是提供互动化的数据分析,可以动态的缩放图表,用做Adhoc analysis非常合适。
3、Scikit Learn。非常好用的MachineLearning库,适合于用于快速定制原型。封装几乎所有的经典算法,易用性极高。
4、Python标准库。这里主要是体现了Python处理字符串的优势,由于Python多功能的属性和对于正则表达式的良好支持,用于处理文本是再合适不过的了。
Python是一套比较平衡的语言,各方面都可以,而R是在统计方面比较突出。R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面(主要用在金融分析与趋势预测)无论是经典还是前沿的方法都有相应的包直接使用;相比Python在这方面贫乏不少。Python的优势在于其胶水语言的特性,一些底层用C写的算法封装在Python包里后性能非常高效。
总之R和SAS是专业性比较强的统计软件,统计专业学生必备,SPSS是更大众化的统计软件,Python不是统计软件,而是一种可以用来做各种事情的语言。R和Python现在越来越受到各大公司的喜欢,也必定会成为将来的发展趋势。Python的功能可远远不止用来分析数据,它可以用来开发,建站,写个小APP什么的。我们所知道的果壳网,知乎,DROPBOX等可都是用Python写得哦。如果你能同时学会Python和R,在数据科学领域肯定就游刃有余了。
总的来说,不同工具各有擅场,最关键的当然还在于业务的掌握和数学方法的掌握(统计学和机器学习等核心方法)。但磨刀不误砍柴工,把基本工具掌握熟练了百利无一弊。而当你要做大数据分析的时候,还会用到Hadoop等工具(实际上这些工具都是可以结合Hadoop大数据平台联合起来用的,后面专题介绍)。而且,工具不是万能的,业务和数据建模方法才是万法之源。不要被工具迷花了眼哦
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07