京公网安备 11010802034615号
经营许可证编号:京B2-20210330
写在大数据变革之前
目前,最活跃的领域是网络终端创新和网络基础设施创新,也就是所谓的大数据产业链的前台和后台。从人们所熟知的台式机,笔记本到智能手机和平板电脑,再到即将问世的网络电视,网络相机,网络眼镜,还有研讨中的网络灯泡,自行汽车和各种各样匪夷所思的网络终端和传感系统,将物质世界和人类社会越来越全面,越来越深入地转化进数据世界的工作正在顺利迅速地进行,好像看不到什么了不起的理论或实践上的障碍能够阻止这一进程。
从人们所熟悉的传统云计算和数据中心到今天的公有云,私有云,开放云,封闭云,再到层出不穷的集硬件,软件,数据存储和分析工具于一身的基础设施,大数据的后台正在从软件即服务(SaaS),平台即服务(PaaS)走向基础设施即服务(IaaS)。在这条路上,好像也看不到什么了不起的理论或实践上的障碍能够阻止这一进程。
真正的决战还是在大数据的中台也就是网络平台方面,这方面的大创新才是大数据时代真正到来的引爆点(Tipping
Point)。无论前台如何丰富多彩,无论后台如何强壮有力,毕竟还需要有一个体系,一个架构,一个服务把人与人,物与物,人与物之间产生的数据按自然逻辑和社会逻辑联系起来,对接上去,集成到一起,才能够释放潜在的经济和社会价值。这种联系,对接和集成的方式用户越喜欢,成本越低,效率越高,数据越多,这个平台的价值就越大,在大数据生态圈里的地位就越高。就现有的网络平台看,还没有一个有足够的能力或潜力完成这一任务,整个产业需要一个或几个大的创新。
就目前产业发展的状况和大数据时代的内在需要看,未来三五年内会在网络平台层面上有机会产生创新性突破的不外乎以下三大方向:
个人数据集成----这是WEB2.0革命的自然深化和扩展,终极目的是创造真正的“数据人”,也就是以个人为中心,将其在互联网上的言行举止和世上一切有关此人的所产生的数据汇集起来精准描述,在保护隐私的前提下进行智能化和个性化的服务匹配。在这方面,FACEBOOK和苹果的基础最好,走的最远。“我的数据”(My
Data),“自我量化”(Quantified
Self),“纳米定位”(Nanotargeting)等一系列新概念正在业内出现,一批围绕个人完整动态数据获取的服务和机制正在尝试之中。
公共服务数据集成----过去远远落后于时代发展的网络公共数据服务近年来异军突起,从零散,滞后,粗略和被动的状态开始迅速走向集成,动态,精细和主动的新阶段。以DATA.GOV为代表的政府数据服务网站在立法,预算,舆论监督和民众督促等力量的推动下,正在成为大数据时代一股崭新而强大的力量,扩展和充实着互联网服务的空间和深度。一个国家,一个社会乃至一个城市的发展水平和竞争实力将和自身的公共服务数据集成和服务的水平紧密相连。公共服务数据集成水平的高低很快将成为“软实力”的主要标志之一。
物质生产数据集成----物质产品的设计和制造一直远离互联网,而现在正以极高的速度和极大的力量与网络业相融合。以“3D打印”这个不甚准确的名词所代表的网络化和数据化的物质产品设计和生产革命极大地提高了人们对网络世界和数据世界的想象力,极大地拓展了网络业的产业边界。过去,网络业只能进行完全数据化的产品和服务,或者通过网络平台帮助物质化的产品和服务进行推广销售。而新兴的网络化和数据化物质产品生产模式展现出由数据到实物的转化过程开始进入低成本,大规模,打破时空界限和个性化的全新历史阶段。这将重新定义众多产品制造业的产业链和商业模式,使物质产品的设计,制造和流通过程所需的数据集成成为产业上游。
这三个方向正好是一个由个人,社会和物质世界三维所组成的空间,这个空间在大数据时代有机地融合起来,为产业发展和社会进步创造机会。在这个空间中任何一维或三维上的任意一点的显著进步都将是大数据服务产业的福音。这不是空想的神话,而是看得见的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01