行业应用成效显著 大数据未来可期
在智能交通领域,大数据分析在各地交通管理部门中得以实施。从当前的数据分析应用看,主要聚焦在交通流量分析和车辆线索发现两方面。交通流量分析可为交通诱导、道路拥塞分析提供辅助性数据,弥补采样GPS信息进行交通流量分析的不足。在车辆线索发现方面,目前在套牌车辆分析以及车辆跟随分析方面成效显著。
大数据优势明显
毫无疑问,安防领域的用户越来越重视数据的价值,期望大数据技术能帮助其创新业务应用,特别是政府部门和企业商铺。政府部门通过十几年的信息化建设,特别是最近几年治安监控、道路卡口的成体系建设,采集了大量的数据资源,这些数据资源目前正亟待挖掘分析,以便提高社会治安管理成效,打击有组织犯罪,改善城市交通等。在企业商铺方面,则重点关注客流分析、热点商品等,用于进一步提高经营效率。
实践证明,这些技术的应用将颠覆已有靠人力脑力分析的管理经营模式,将业务管理和商业利润以数据化进行运行。因为传统的商务智能可以解决部分用户的数据挖掘需求,但当数据大规模增长时,传统的技术显得力不从心。利用累积的大数据资源,以及快速发展的大数据技术,可以深度挖掘安防领域的视频数据,在时间跨度和空间广度范围分析用户行为模式,为用户的经营或管理决策提供数据支撑。
民用领域商机更大
安防大数据有两个领域:一个是行业,一个是民用。行业领域的业务目标主要是协助业主创造价值,以及提高业主数据资产的附加值,因此充分开展视频分析,促进视频数据与行业业务数据的融合分析,创新行业应用新模式,是最为可行的商业模式。民用领域则跟当前的互联网商业模式比较接近,通过扩大用户规模,提供数据服务,深入挖掘用户消费习惯模式和潜在需求趋向,优化资源配置,是主要的商业模式。从这两个领域来看,民用领域的商业机会可能更多一点,因为通过公共的数据平台,能够吸引大量第三方的服务商一起提供多样化的服务,满足公众领域各式各样的客户需求。
但目前来看,真正实现大数据价值的还是在行业领域。从整体的格局来看,自从大数据技术在安防行业落地后,正对安防的产业格局产生积极的影响。安防建设从早期的模拟到数字,再到高清,产业发展的方向正因为大数据的发展而发生着变化。大数据应用进一步促进安防行业的智能化,同时多传感器的融合应用也在逐步替代传统的单一视频应用。大数据应用的发展,将促使安防应用与行业业务应用进一步融合,提高安防产品在业务实战应用中的成效。从这个角度分析,应该看到大数据虽然给行业应用带来的价值没有民用领域的大,但要看到其对产业的影响和推动是巨大的。
视频数据的应用障碍
大数据技术兴起于互联网行业,其对互联网的结构化数据和半结构化数据具有良好的适应性,但安防行业存在大量的非结构化数据,直接利用当前的大数据技术开展非结构化数据的分析是相当困难的。目前安防行业正积极开展大数据技术与智能识别技术的结合,通过智能识别技术从视频、图片等非结构化数据中提取结构化或半结构化特征数据,然后利用逐步成熟的大数据技术开展数据分析挖掘。
当前安防行业的大数据还主要集中在卡口数据,特别是交通卡口采集的车辆通行信息。但随着Smart IPC的进一步推广应用,泛卡口采集的车辆、人员、行为等数据,将成为新的数据分析热点。
泛IT化合作
安防行业的技术发展相对整个IT行业,还是稍微滞后。当前大数据在互联网的应用最为广泛,且卓有成效,IT厂商在大数据领域积累了大量的技术和经验。在大数据市场的应用过程中,安防厂商的首要目标是解决用户的需求,如果采取自身研发,不仅存在技术薄弱、人才匮乏等问题,同时也是项目时间所不能允许的。因此,与IT厂商的合作必然是最为可行的方式,形成泛IT化的应用模式,将安防大数据的应用与其他行业挂钩,用反渗透的思维形成利益共同体,打造安防大数据模式下的产业联盟
数据分析咨询请扫描二维码
数据分析工具推荐 数据分析工具的选择至关重要。不同工具适用于不同的需求和场景。以下是一些推荐的数据分析工具,根据您的需求 ...
2024-11-27选择适合您需求的数据分析工具 数据分析作为商业决策过程中的关键环节,工具的选择至关重要。不同的工具适用于不同的场景和需求 ...
2024-11-27数据架构文档的编写涉及多个方面,包括内容结构、编写原则和具体要求。遵循规范可以帮助团队更好地理解和管理数据架构,支持项目 ...
2024-11-27挑战与解决方案概述 在数字化时代,数据开放共享对于推动创新和发展至关重要。然而,这一进程面临诸多挑战。保护用户隐私、确保 ...
2024-11-27促进科学研究和创新 数据开放共享为研究人员提供更广泛的资源和合作机会,加速科学知识的发展。通过访问他人的数据集,验证研究 ...
2024-11-27数据组织与存储策略 数据模型是数据仓库和商业智能系统的核心,通过合理的数据组织和存储策略,确保高效、低成本、高质量地利用 ...
2024-11-27持续关注数据系统运行状态 - 数据设计与开发完成后,维护与优化工作成为至关重要的环节。这个过程需要持续且细致的关注,以确保 ...
2024-11-27数据服务未来的趋势 智能化和自动化: 随着人工智能和机器学习技术的飞速发展,数据服务领域正逐渐朝着更智能化和自动化的方向 ...
2024-11-27未来最有前景的行业主要集中在以下几个领域: 人工智能与机器学习:人工智能被认为是未来最具潜力的行业之一,其应用范围广泛 ...
2024-11-27根据多条证据,目前多个行业展现出良好的发展前景。以下是一些被认为具有最好发展前景的行业: 人工智能与机器学习:人工智能 ...
2024-11-27学习数据分析后,可以在多种类型的单位找到工作机会。这些单位包括但不限于: 政府机关:数据分析师在政府机构中扮演重要角色 ...
2024-11-27必备的职业技能 统计学基础 - 理解概率、假设检验、回归分析等统计概念。 - 运用统计方法对数据进行分析和解读。 编程能力 - 掌 ...
2024-11-27基础课程 - 统计学基础: 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识。这有助于分析师更好地理解数据背后 ...
2024-11-27数据分析领域涉及众多工具软件,涵盖了从数据处理、分析到可视化的各个方面。在选择适合自己需求的工具时,需要考虑数据规模、分 ...
2024-11-27在数据分析领域,选择合适的工具至关重要。不同的软件适用于不同的需求和技能水平。以下是几款值得考虑的数据分析软件: - Table ...
2024-11-27数据分析中常用的Excel与Python函数公式涵盖了广泛的应用场景。掌握这些基础和高级技巧对于成为一名优秀的数据分析师至关重要。 ...
2024-11-27Python是一种高级编程语言,由荷兰程序员Guido van Rossum于1989年圣诞节期间开始开发,并于1991年首次发布。Python的设计哲学强 ...
2024-11-27课程内容 数学基础: 高等数学、线性代数、概率论与数理统计、微积分等为算法设计和数据分析打下基础。 编程与算法: 掌握 ...
2024-11-27爬虫工程师是互联网时代中至关重要的职业之一,他们的工作内容主要涉及编写和维护网络爬虫程序,进行数据采集与清洗,设计系统架 ...
2024-11-27技能需求 数据管理与建模 - 掌握SQL、HiveQL、Spark SQL等数据库语言,进行复杂数据查询和分析。 - 使用数据建模工具如ER/Studio ...
2024-11-27