有一水稻施肥的盆栽试验,设置了5个处理:A1和A2分别施用两种不同工艺流程的氨水,A3施碳酸氢铵,A4施尿素,A5为对照。每个处理各4盆,随机置于同一试验大棚。水稻稻谷产量见下表。现分析不同施肥处理下,水稻稻谷产量之间是否有显著差异。
1.1.3 课程实习任务
①按课程设计题目要求设计脚本;
②脚本能够完成对水稻数据的单因素方差分析;
③编写代码;
④脚本分析与调试;
⑤撰写实验报告。
1.1.4 课程实习目标
①巩固并加深对R语言的理解和掌握;
②通过课外学习拓展课程知识面;
③提高运用R语言解决生活实际问题的能力;
④初步掌握开发简单脚本的基本方法;
⑤掌握书写程序设计与软件开发的阐述性、总结性文档。2. 程序设计层次及说明展示
由于采用代码注释的方法,形式上不太美观,且不容易直接看到结果,造成阅览不变,故笔者采用了将脚本文件分部分执行,截图进行说明的方法,让每部操作清晰明了,结果明显。再在本节末尾附上代码文件以供阅览。
2.1 数据录入
此处是直接进行了程序录入,将数据录入参数shuidaodata中。其中,每行数据对应一个组别。
而这里可以也可使用scan函数进行交互键入,又或者将数据保存为csv格式,再用read.csv函数根据途径录入也可以。
这里根据每行对应的类型不同分别命名。命名的列量名称为参数name,数据框名为参数shuidao。
由于水稻数据内容构成比较简单,因素单一,所以不需要再融化数据框操作了,因为在数据框形成时已经完成了融化处理的结果,再进行转化反而繁琐,故不需要使用melt函数。同理,此份水稻数据中不包含冗余成分,故也同样不需要冗杂数据处理。
此处直接使用aov函数进行单因素方差分析,得到结果参数result的F值为11.18,p值小于0.05,且各因子水平的均值之间存在十分显著差异。
经过单因素方差分析可得知,肥料因素对产量的结果影响十分显著,也因此可以再做一些步骤来确认其真实性,以及深入了解其差异性的特质。
这里先用lm函数进行线性回归模型拟合,将结果参数mo录入qqPlot函数中,得到下图:
可见回归曲线在范围内,故数据符合正态性检验。
检验正态性的方法不唯一,在网上资料查询中,还有如下方法:
1.ks.test函数,但是由于数据中包含重复数值,故前提假设不成立,不便使用。
2.W检验的shapiro.test函数,得出p值大于0.05时数据正态性得到检验。
可见水稻数据正态性依旧得到检验。
3. fBasics包里的shapiroTest函数
可见水稻数据正态性依旧得到检验。
由于数据满足正态性,故使用bartlett.test函数进行方差齐性检验,得出结果p值远大于显著性水平0.05,因此不能拒绝原假设,认为不同水平下的水稻数据是等方差的。故等方差性得到检验。
而当数据不满足正态性时,也可以使用leveneTest函数进行方差齐性检验。
为更深一步探索每组之间的差异,采用TukeyHSD函数检验,如下:
其中修改了par中的绘图参数,以便图形更加简洁清晰,绘图如下:
在这里可以清晰的看出,与0坐标线是值信水平,与其相交的部分就是效果不显著的组别,反之则是效果显著的组别。也因此可以得出结论:A1-A5、A2-A4、A3-A5、A4-A5之间有显著的差异。
同样的,在网络搜索中,还有其他的方法可以揭示组别之间的差异,此处我使用的是多重t检验法:
在这里可以清晰的看出,p值小于0.05的就是差异较为显著的组别,和上一小节的结论一致。
2.9 结论
从水稻数据的单因素方差分析结果得知,肥料因素对产量的结果影响十分显著,且结果经检验符合正态性、等方差性,故结果较为可信。
最后经过各组均值差异检测后得知,A1-A5、A2-A4、A3-A5、A4-A5四组之间差异较为显著,且由题干可知,A5为对照组,故可知A1、A3、A4三组肥料效果较好。
2.10 代码展示
#数据录入
shuidaodata<-c(24,30,28,26,
27,24,21,26,
31,28,25,30,
32,33,33,28,
21,22,16,21)
#转化为数据框
name<-rep(paste(“A”,1:5,sep=”“),each=4)
shuidao<-data.frame(name,shuidaodata)
#单因素方差分析
result<-aov(shuidaodata~name,data=shuidao)
summary(result)
#正态性检验
#Q-Q图
mo<-lm(shuidaodata~name,data=shuidao)
library(car)
qqPlot(mo,main=”Q-Qplot图”,las=T)
#W检验
#shapiro.test(shuidaodata)
#fBasics包的shapiroTest
#library(fBasics)
#shapiroTest(shuidaodata)
#方差齐性检验
bartlett.test(shuidaodata~name,data=shuidao)
#各组均值差异
#杜奇检验
duqi<-TukeyHSD(result)
par(lwd=2,cex.lab=1.5,cex.axis=1.5,col.axis=”blue”,las=1)
plot(duqi,mgp=c(3,0.5,0))
#多重t检验法
#pairwise.t.text(shuidaodata,name)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12