
有一水稻施肥的盆栽试验,设置了5个处理:A1和A2分别施用两种不同工艺流程的氨水,A3施碳酸氢铵,A4施尿素,A5为对照。每个处理各4盆,随机置于同一试验大棚。水稻稻谷产量见下表。现分析不同施肥处理下,水稻稻谷产量之间是否有显著差异。
1.1.3 课程实习任务
①按课程设计题目要求设计脚本;
②脚本能够完成对水稻数据的单因素方差分析;
③编写代码;
④脚本分析与调试;
⑤撰写实验报告。
1.1.4 课程实习目标
①巩固并加深对R语言的理解和掌握;
②通过课外学习拓展课程知识面;
③提高运用R语言解决生活实际问题的能力;
④初步掌握开发简单脚本的基本方法;
⑤掌握书写程序设计与软件开发的阐述性、总结性文档。2. 程序设计层次及说明展示
由于采用代码注释的方法,形式上不太美观,且不容易直接看到结果,造成阅览不变,故笔者采用了将脚本文件分部分执行,截图进行说明的方法,让每部操作清晰明了,结果明显。再在本节末尾附上代码文件以供阅览。
2.1 数据录入
此处是直接进行了程序录入,将数据录入参数shuidaodata中。其中,每行数据对应一个组别。
而这里可以也可使用scan函数进行交互键入,又或者将数据保存为csv格式,再用read.csv函数根据途径录入也可以。
这里根据每行对应的类型不同分别命名。命名的列量名称为参数name,数据框名为参数shuidao。
由于水稻数据内容构成比较简单,因素单一,所以不需要再融化数据框操作了,因为在数据框形成时已经完成了融化处理的结果,再进行转化反而繁琐,故不需要使用melt函数。同理,此份水稻数据中不包含冗余成分,故也同样不需要冗杂数据处理。
此处直接使用aov函数进行单因素方差分析,得到结果参数result的F值为11.18,p值小于0.05,且各因子水平的均值之间存在十分显著差异。
经过单因素方差分析可得知,肥料因素对产量的结果影响十分显著,也因此可以再做一些步骤来确认其真实性,以及深入了解其差异性的特质。
这里先用lm函数进行线性回归模型拟合,将结果参数mo录入qqPlot函数中,得到下图:
可见回归曲线在范围内,故数据符合正态性检验。
检验正态性的方法不唯一,在网上资料查询中,还有如下方法:
1.ks.test函数,但是由于数据中包含重复数值,故前提假设不成立,不便使用。
2.W检验的shapiro.test函数,得出p值大于0.05时数据正态性得到检验。
可见水稻数据正态性依旧得到检验。
3. fBasics包里的shapiroTest函数
可见水稻数据正态性依旧得到检验。
由于数据满足正态性,故使用bartlett.test函数进行方差齐性检验,得出结果p值远大于显著性水平0.05,因此不能拒绝原假设,认为不同水平下的水稻数据是等方差的。故等方差性得到检验。
而当数据不满足正态性时,也可以使用leveneTest函数进行方差齐性检验。
为更深一步探索每组之间的差异,采用TukeyHSD函数检验,如下:
其中修改了par中的绘图参数,以便图形更加简洁清晰,绘图如下:
在这里可以清晰的看出,与0坐标线是值信水平,与其相交的部分就是效果不显著的组别,反之则是效果显著的组别。也因此可以得出结论:A1-A5、A2-A4、A3-A5、A4-A5之间有显著的差异。
同样的,在网络搜索中,还有其他的方法可以揭示组别之间的差异,此处我使用的是多重t检验法:
在这里可以清晰的看出,p值小于0.05的就是差异较为显著的组别,和上一小节的结论一致。
2.9 结论
从水稻数据的单因素方差分析结果得知,肥料因素对产量的结果影响十分显著,且结果经检验符合正态性、等方差性,故结果较为可信。
最后经过各组均值差异检测后得知,A1-A5、A2-A4、A3-A5、A4-A5四组之间差异较为显著,且由题干可知,A5为对照组,故可知A1、A3、A4三组肥料效果较好。
2.10 代码展示
#数据录入
shuidaodata<-c(24,30,28,26,
27,24,21,26,
31,28,25,30,
32,33,33,28,
21,22,16,21)
#转化为数据框
name<-rep(paste(“A”,1:5,sep=”“),each=4)
shuidao<-data.frame(name,shuidaodata)
#单因素方差分析
result<-aov(shuidaodata~name,data=shuidao)
summary(result)
#正态性检验
#Q-Q图
mo<-lm(shuidaodata~name,data=shuidao)
library(car)
qqPlot(mo,main=”Q-Qplot图”,las=T)
#W检验
#shapiro.test(shuidaodata)
#fBasics包的shapiroTest
#library(fBasics)
#shapiroTest(shuidaodata)
#方差齐性检验
bartlett.test(shuidaodata~name,data=shuidao)
#各组均值差异
#杜奇检验
duqi<-TukeyHSD(result)
par(lwd=2,cex.lab=1.5,cex.axis=1.5,col.axis=”blue”,las=1)
plot(duqi,mgp=c(3,0.5,0))
#多重t检验法
#pairwise.t.text(shuidaodata,name)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10