
单因素下的方差分析
(1) 正态假设。对于因素的每个水平,其观测值都是来自正态总体的随机样本;
(2) 方差齐次假设。各个总体的方差相同;
(3) 独立假设。观测值之间都是独立的。
设试验中的因素A,有r个水平A1,A2,...,An,在每个水平下进行试验得到结果xi1,xi2,...,xini,i=1,2,...,r,其被看作是来自第i个正态总体xi∼N(μi,σ2),其中参数未知且每个样本都独立。从而单因素分析的数学模型可以表示为一种线性模型。
其中,μ是所有总体的均值,αi=μi−μ称为第i个水平的效应,Eij是随机误差。
1.正态性检验
在R语言中,使用Shapiro.test(x)可以对数据x进行正态性检验,参数x是要检验的数据集,它是长度在3~5000之间的向量。
2.方差齐次性检验
该方法是要检验数据在不同水平下,其方差是否相等。在R语言中,使用Bartlett.test()来实现。
方差分析的目的是,要比较因素A的r个水平下,试验结果是否有显著差异。以样本均值作为检验的标准,写出检验假设:
H0:α1=α2=...=αr,H1:α1,α2,...,αr不全相等
如果拒绝原假设H0,说明样本来自不同的正态总体,则由因素A的各个水平所造成均值的差异有统计意义;
如果不能拒绝原假设H0,说明样本来自相同的正态总体,因素的不同水平之间无差异。
案例1,某银行规定VIP客户的月均账户余额要达到100万元,并以此作为比较各个分行业绩的一项指标。这里的“分行”即为因子,账户余额是所要检验的指标,先从三个分行(对应三个水平A1、A2、A3)中,分别随机抽取7个VIP客户的账户,数据列在表(1)中。
表(1) 银行的三个分行A1、A2、A3
(a)正态性检验
//zheng.R
x1=c(103,101,98,110,105,100,106)
x2=c(113,107,108,116,114,110,115)
x3=c(82,92,84,86,84,90,88)
shapiro.test(x1)
shapiro.test(x2)
shapiro.test(x3
效果如下:
图(1) 正态性检验的结果
由图(1)知,P(A1)=0.948 > 0.05,不能拒绝原假设,
P(A2)=0.4607 > 0.05,不能拒绝原假设,
P(A3)=0.7724 > 0.05,不能拒绝原假设,
而原假设H0是变量x服从正态分布,即A1、A2、A3都服从正态分布。
(b)方差齐次性检测
//qi.R
#方差齐性检验
x=c(x1,x2,x3)
account=data.frame(x,A=factor(rep(1:3,each=7)))
bartlett.test(x~A,data=account)
效果如下:
图(2) 方差齐次性检测
由于P=0.9341 > 0.05,不能拒绝原假设,而原假设H0是样本是“齐次的”,即三个样都是等方差的。
(c) 单因素分析
当数据符合正态性,和方差齐次之后,使用aov()就可以进行方差分析了。
//fen.R
a.aov=aov(x~A,data=account)
summary(a.aov)
plot(account$x~account$A)
如图(3)、图(4)所示:
在图(3)中,A表示因子,Residuals表示残差,
Df 表示自由度
SumSq 表示平方和
Mean Sq 表示均方和
F value F 表示F检验统计量的值
Pr(>F) 表示概率。
由于P=8.446e-10 < 0.05,说明拒绝原假设,即不同分行A1、A2、A3的经济业绩有显著差别。
同样,在图(4)中,可以看到三个分行的Me(中位数,箱线图里最粗的黑线,就是中位数,记为Me)是明显不同的,其中分行A1的Me=85,分行A2的Me=103,分行A3的Me=114,,也就是分行A1、A2、A3的经济业绩有显著差别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10