
单因素下的方差分析
(1) 正态假设。对于因素的每个水平,其观测值都是来自正态总体的随机样本;
(2) 方差齐次假设。各个总体的方差相同;
(3) 独立假设。观测值之间都是独立的。
设试验中的因素A,有r个水平A1,A2,...,An,在每个水平下进行试验得到结果xi1,xi2,...,xini,i=1,2,...,r,其被看作是来自第i个正态总体xi∼N(μi,σ2),其中参数未知且每个样本都独立。从而单因素分析的数学模型可以表示为一种线性模型。
其中,μ是所有总体的均值,αi=μi−μ称为第i个水平的效应,Eij是随机误差。
1.正态性检验
在R语言中,使用Shapiro.test(x)可以对数据x进行正态性检验,参数x是要检验的数据集,它是长度在3~5000之间的向量。
2.方差齐次性检验
该方法是要检验数据在不同水平下,其方差是否相等。在R语言中,使用Bartlett.test()来实现。
方差分析的目的是,要比较因素A的r个水平下,试验结果是否有显著差异。以样本均值作为检验的标准,写出检验假设:
H0:α1=α2=...=αr,H1:α1,α2,...,αr不全相等
如果拒绝原假设H0,说明样本来自不同的正态总体,则由因素A的各个水平所造成均值的差异有统计意义;
如果不能拒绝原假设H0,说明样本来自相同的正态总体,因素的不同水平之间无差异。
案例1,某银行规定VIP客户的月均账户余额要达到100万元,并以此作为比较各个分行业绩的一项指标。这里的“分行”即为因子,账户余额是所要检验的指标,先从三个分行(对应三个水平A1、A2、A3)中,分别随机抽取7个VIP客户的账户,数据列在表(1)中。
表(1) 银行的三个分行A1、A2、A3
(a)正态性检验
//zheng.R
x1=c(103,101,98,110,105,100,106)
x2=c(113,107,108,116,114,110,115)
x3=c(82,92,84,86,84,90,88)
shapiro.test(x1)
shapiro.test(x2)
shapiro.test(x3
效果如下:
图(1) 正态性检验的结果
由图(1)知,P(A1)=0.948 > 0.05,不能拒绝原假设,
P(A2)=0.4607 > 0.05,不能拒绝原假设,
P(A3)=0.7724 > 0.05,不能拒绝原假设,
而原假设H0是变量x服从正态分布,即A1、A2、A3都服从正态分布。
(b)方差齐次性检测
//qi.R
#方差齐性检验
x=c(x1,x2,x3)
account=data.frame(x,A=factor(rep(1:3,each=7)))
bartlett.test(x~A,data=account)
效果如下:
图(2) 方差齐次性检测
由于P=0.9341 > 0.05,不能拒绝原假设,而原假设H0是样本是“齐次的”,即三个样都是等方差的。
(c) 单因素分析
当数据符合正态性,和方差齐次之后,使用aov()就可以进行方差分析了。
//fen.R
a.aov=aov(x~A,data=account)
summary(a.aov)
plot(account$x~account$A)
如图(3)、图(4)所示:
在图(3)中,A表示因子,Residuals表示残差,
Df 表示自由度
SumSq 表示平方和
Mean Sq 表示均方和
F value F 表示F检验统计量的值
Pr(>F) 表示概率。
由于P=8.446e-10 < 0.05,说明拒绝原假设,即不同分行A1、A2、A3的经济业绩有显著差别。
同样,在图(4)中,可以看到三个分行的Me(中位数,箱线图里最粗的黑线,就是中位数,记为Me)是明显不同的,其中分行A1的Me=85,分行A2的Me=103,分行A3的Me=114,,也就是分行A1、A2、A3的经济业绩有显著差别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20