单因素下的方差分析
(1) 正态假设。对于因素的每个水平,其观测值都是来自正态总体的随机样本;
(2) 方差齐次假设。各个总体的方差相同;
(3) 独立假设。观测值之间都是独立的。
设试验中的因素A,有r个水平A1,A2,...,An,在每个水平下进行试验得到结果xi1,xi2,...,xini,i=1,2,...,r,其被看作是来自第i个正态总体xi∼N(μi,σ2),其中参数未知且每个样本都独立。从而单因素分析的数学模型可以表示为一种线性模型。
其中,μ是所有总体的均值,αi=μi−μ称为第i个水平的效应,Eij是随机误差。
1.正态性检验
在R语言中,使用Shapiro.test(x)可以对数据x进行正态性检验,参数x是要检验的数据集,它是长度在3~5000之间的向量。
2.方差齐次性检验
该方法是要检验数据在不同水平下,其方差是否相等。在R语言中,使用Bartlett.test()来实现。
方差分析的目的是,要比较因素A的r个水平下,试验结果是否有显著差异。以样本均值作为检验的标准,写出检验假设:
H0:α1=α2=...=αr,H1:α1,α2,...,αr不全相等
如果拒绝原假设H0,说明样本来自不同的正态总体,则由因素A的各个水平所造成均值的差异有统计意义;
如果不能拒绝原假设H0,说明样本来自相同的正态总体,因素的不同水平之间无差异。
案例1,某银行规定VIP客户的月均账户余额要达到100万元,并以此作为比较各个分行业绩的一项指标。这里的“分行”即为因子,账户余额是所要检验的指标,先从三个分行(对应三个水平A1、A2、A3)中,分别随机抽取7个VIP客户的账户,数据列在表(1)中。
表(1) 银行的三个分行A1、A2、A3
(a)正态性检验
//zheng.R
x1=c(103,101,98,110,105,100,106)
x2=c(113,107,108,116,114,110,115)
x3=c(82,92,84,86,84,90,88)
shapiro.test(x1)
shapiro.test(x2)
shapiro.test(x3
效果如下:
图(1) 正态性检验的结果
由图(1)知,P(A1)=0.948 > 0.05,不能拒绝原假设,
P(A2)=0.4607 > 0.05,不能拒绝原假设,
P(A3)=0.7724 > 0.05,不能拒绝原假设,
而原假设H0是变量x服从正态分布,即A1、A2、A3都服从正态分布。
(b)方差齐次性检测
//qi.R
#方差齐性检验
x=c(x1,x2,x3)
account=data.frame(x,A=factor(rep(1:3,each=7)))
bartlett.test(x~A,data=account)
效果如下:
图(2) 方差齐次性检测
由于P=0.9341 > 0.05,不能拒绝原假设,而原假设H0是样本是“齐次的”,即三个样都是等方差的。
(c) 单因素分析
当数据符合正态性,和方差齐次之后,使用aov()就可以进行方差分析了。
//fen.R
a.aov=aov(x~A,data=account)
summary(a.aov)
plot(account$x~account$A)
如图(3)、图(4)所示:
在图(3)中,A表示因子,Residuals表示残差,
Df 表示自由度
SumSq 表示平方和
Mean Sq 表示均方和
F value F 表示F检验统计量的值
Pr(>F) 表示概率。
由于P=8.446e-10 < 0.05,说明拒绝原假设,即不同分行A1、A2、A3的经济业绩有显著差别。
同样,在图(4)中,可以看到三个分行的Me(中位数,箱线图里最粗的黑线,就是中位数,记为Me)是明显不同的,其中分行A1的Me=85,分行A2的Me=103,分行A3的Me=114,,也就是分行A1、A2、A3的经济业绩有显著差别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31