SPSS分类分析:决策树
“决策树”过程创建基于树的分类模型。它将个案分为若干组,或根据自变量(预测变量)的值预测因变量(目标变量)的值。此过程为探索性和证实性分类分析提供验证工具。
1、分段。确定可能成为特定组成员的人员。
2、层次。将个案指定为几个类别之一,如高风险组、中等风险组和低风险组。
3、预测。创建规则并使用它们预测将来的事件,如某人将拖欠贷款或者车辆或住宅潜在转售价值的可能性。
4、数据降维和变量筛选。从大的变量集中选择有用的预测变量子集,以用于构建正式的参数模型。
5、交互确定。确定仅与特定子组有关的关系,并在正式的参数模型中指定这些关系。
6、类别合并和连续变量离散化。以最小的损失信息对组预测类别和连续变量进行重新码。
7、示例。一家银行希望根据贷款申请人是否表现出合理的信用风险来对申请人进行分类。根据各种因素(包括过去客户的已知信用等级),您可以构建模型以预测客户将来是否可能拖欠贷款。
二、增长方法(分析-分类-决策树)
1、CHAID.卡方自动交互检测。在每一步,CHAID选择与因变量有最强交互作用的自变量(预测变量)。如果每个预测变量的类别与因变量并非显著不同,则合并这些类别。
2、穷举CHAID.CHAID的一种修改版本,其检查每个预测变量所有可能的拆分。
3、CRT.分类和回归树。CRT将数据拆分为若干尽可能与因变量同质的段。所有个案中因变量值都相同的终端节点是同质的“纯”节点。
4、QUEST.快速、无偏、有效的统计树。一种快速方法,它可避免其他方法对具有许多类别的预测变量的偏倚。只有在因变量是名义变量时才能指定QUEST。
三、验证(分析-分类-决策树-验证)
1、交叉验证:交叉验证将样本分割为许多子样本(或样本群)。然后,生成树模型,并依次排除每个子样本中的数据。第一个树基于第一个样本群的个案之外的所有个案,第二个树基于第二个样本群的个案之外的所有个案,依此类推。对于每个树,估计其误分类风险的方法是将树应用于生成它时所排除的子样本。
1.1、最多可以指定25个样本群。该值越大,每个树模型中排除的个案数就越小。
1.2、交叉验证生成单个最终树模型。最终树经过交叉验证的风险估计计算为所有树的风险的平均值。
2、分割样本验证:对于分割样本验证,模型是使用训练样本生成的,并在延续样本上进行测试。
2.1、您可以指定训练样本大小(表示为样本总大小的百分比),或将样本分割为训练样本和测试样本的变量。
2.2、如果使用变量定义训练样本和测试样本,则将变量值为1的个案指定给训练样本,并将所有其他个案指定给测试样本。该变量不能是因变量、权重变量、影响变量或强制的自变量。
2.3、您可以同时显示训练样本和测试样本的结果,或者仅显示测试样本的结果。
2.4、对于小的数据文件(个案数很少的数据文件),应该谨慎使用分割样本验证。训练样本很小可能会导致很差的模型,因为在某些类别中,可能没有足够的个案使树充分生长
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21