
SPSS最优尺度:分类回归
一、分类回归(分析-回归-最佳尺度)
1、概念:分类回归通过为类别指定数值来量化分类数据,从而生成转换后变量的最优线性回归方程。分类回归也用缩写词CATREG来表示(代表categorical regression)。标准线性回归分析涉及使响应变量(因变量)和预测变量(自变量)的加权组合之间的平方差之和达到最小。变量通常是定量的,(名义)分类数据重新编码为二元变量或对比变量。因此,分类变量用于分离个案组,并且该技术估计每个组的独立的参数集。估计的系数反映了预测变量的变化对响应的影响程度。对于预测变量值的任何组合都可以预测响应。
另一种方法需要对分类预测变量值本身进行响应回归。这样,将为每个变量分别估计一个系数。但是,对于分类变量,类别值是任意的。以不同的方式编码类别将产生不同的系数,这样,在对同样的几个变量的分析进行比较时,难度就增大了。CATREG通过同时调整名义、序数和数值变量扩展了标准方法。该过程量化分类变量以使量化反映初始类别的特征。该过程以与处理数值变量相同的方式处理量化的分类变量。使用非线性转换允许在各种级别分析变量以查找最佳拟合模型。
2、示例。分类回归可用于描述工作满意度对工作类别、地理区域和旅行量的依赖程度。您可能会发现高满意度对应于经理和低旅行量。生成的回归方程可用于针对三个自变量的任何组合预测工作满意度。
3、统计量和图。频率、回归系数、ANOVA表、迭代历史记录、类别量化、未转换的预测变量之间的相关性、转换后的预测变量之间的相关性、残差图和变换图。
4、数据。CATREG在类别指示变量上运行。类别指示符应为正整数。可使用“离散化”对话框将小数值变量和字符串变量转换为正整数。
5、假设。只允许一个响应变量,但是预测变量的最大数目为200。该数据必须至少包含三个有效个案,并且有效个案数必须大于预测变量数加一。
6、相关过程。CATREG等效于使用最优尺度的分类典型相关性分析(OVERALS),该分析有两个变量集,其中一个只包含一个变量。将所有变量调整为数值级别对应于标准多重回归分析。
二、规则化(分析-回归-最佳尺度-规则化)
1、方法。规则化方法可以向0方向缩小回归系数估计,以降低其变异性,从而改善模型的预测误差。
1.1、Ridge回归。Ridge回归引入惩罚项以缩小系数,惩罚项等于系数平方乘以惩罚系数的总和。该系数可从0(无惩罚)到1变化;如果指定了范围与增量,过程将搜索“最佳”的惩罚值。
1.2、套索。套索的惩罚项是基于绝对系数的总和,惩罚系数的指定与Ridge回归类似,但套索涉及更密集的计算。
1.3、弹性网络。“弹性网络”简单地组合套索和Ridge回归惩罚,在指定的值网格中搜索以发现“最佳”的套索和Ridge回归惩罚系数。对于给定的套索与Ridge回归惩罚,“弹性网络”的计算量并不比套索多很多。
2、显示规则化图。这些是回归系数与规则化惩罚图。在搜索某个值范围以寻找“最佳”惩罚系数时,它提供了有关回归系数在该范围上如何变化的视图。
3、弹性网络图。对于“弹性网络”方法,由Ridge回归惩罚值产生单独的规则化图。所有可能图使用指定的最小和最大Ridge回归惩罚值所确定范围中的每个值。为部分Ridge惩罚允许您指定由最小和最大Ridge回归惩罚值所确定范围的值子集。只需键入惩罚值的编号(或指定值范围),然后单击添加。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04