热线电话:13121318867

登录
首页精彩阅读SPSS最优尺度:分类回归
SPSS最优尺度:分类回归
2017-11-05
收藏

SPSS最优尺度:分类回归

一、分类回归(分析-回归-最佳尺度)

1、概念:分类回归通过为类别指定数值来量化分类数据,从而生成转换后变量的最优线性回归方程。分类回归也用缩写词CATREG来表示(代表categorical regression)。标准线性回归分析涉及使响应变量(因变量)和预测变量(自变量)的加权组合之间的平方差之和达到最小。变量通常是定量的,(名义)分类数据重新编码为二元变量或对比变量。因此,分类变量用于分离个案组,并且该技术估计每个组的独立的参数集。估计的系数反映了预测变量的变化对响应的影响程度。对于预测变量值的任何组合都可以预测响应。

另一种方法需要对分类预测变量值本身进行响应回归。这样,将为每个变量分别估计一个系数。但是,对于分类变量,类别值是任意的。以不同的方式编码类别将产生不同的系数,这样,在对同样的几个变量的分析进行比较时,难度就增大了。CATREG通过同时调整名义、序数和数值变量扩展了标准方法。该过程量化分类变量以使量化反映初始类别的特征。该过程以与处理数值变量相同的方式处理量化的分类变量。使用非线性转换允许在各种级别分析变量以查找最佳拟合模型。

2、示例。分类回归可用于描述工作满意度对工作类别、地理区域和旅行量的依赖程度。您可能会发现高满意度对应于经理和低旅行量。生成的回归方程可用于针对三个自变量的任何组合预测工作满意度。

3、统计量和图。频率、回归系数、ANOVA表、迭代历史记录、类别量化、未转换的预测变量之间的相关性、转换后的预测变量之间的相关性、残差图和变换图。

4、数据。CATREG在类别指示变量上运行。类别指示符应为正整数。可使用“离散化”对话框将小数值变量和字符串变量转换为正整数。

5、假设。只允许一个响应变量,但是预测变量的最大数目为200。该数据必须至少包含三个有效个案,并且有效个案数必须大于预测变量数加一。

6、相关过程。CATREG等效于使用最优尺度的分类典型相关性分析(OVERALS),该分析有两个变量集,其中一个只包含一个变量。将所有变量调整为数值级别对应于标准多重回归分析。

二、规则化(分析-回归-最佳尺度-规则化)

1、方法。规则化方法可以向0方向缩小回归系数估计,以降低其变异性,从而改善模型的预测误差。

1.1、Ridge回归。Ridge回归引入惩罚项以缩小系数,惩罚项等于系数平方乘以惩罚系数的总和。该系数可从0(无惩罚)到1变化;如果指定了范围与增量,过程将搜索“最佳”的惩罚值。

1.2、套索。套索的惩罚项是基于绝对系数的总和,惩罚系数的指定与Ridge回归类似,但套索涉及更密集的计算。

1.3、弹性网络。“弹性网络”简单地组合套索和Ridge回归惩罚,在指定的值网格中搜索以发现“最佳”的套索和Ridge回归惩罚系数。对于给定的套索与Ridge回归惩罚,“弹性网络”的计算量并不比套索多很多。

2、显示规则化图。这些是回归系数与规则化惩罚图。在搜索某个值范围以寻找“最佳”惩罚系数时,它提供了有关回归系数在该范围上如何变化的视图。

3、弹性网络图。对于“弹性网络”方法,由Ridge回归惩罚值产生单独的规则化图。所有可能图使用指定的最小和最大Ridge回归惩罚值所确定范围中的每个值。为部分Ridge惩罚允许您指定由最小和最大Ridge回归惩罚值所确定范围的值子集。只需键入惩罚值的编号(或指定值范围),然后单击添加。


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询