SPSS分析:复杂样本
一、概念:
复杂样本在很多方面与简单随机样本不同。在简单随机样本中,各抽样单元是直接从整个总体中采用不放回方式以等概率(WOR)随机选择的。相比之下,给定的复杂样本具有以下部分或全部特征:
1、层次。分层抽样在总体的非重叠子组(即层次)中独立选择样本。例如,层次可以是社会经济组、工作类别、年龄组或种族组。通过分层,可以确保子组的样本大小足够大,提高整个估计值的精确度,并在不同层次使用不同抽样方法。
2、聚类。聚类抽样需要选择抽样单元组(即聚类)。例如,聚类可以是学校、医院或地理区域,抽样单元可以是学生、病人或市民。聚类在多阶段设计和区域(地理)样本中很常见。
3、多阶段。在多阶段抽样中,应基于聚类选择第一阶段样本。然后,通过从所选聚类抽取子样本创建第二阶段样本。如果第二阶段样本是基于子聚类的,则可以向样本添加第三阶段。例如,在调查的第一阶段,可以抽取城市样本。然后,从所选城市中,可以抽取家庭样本。最后,从所选家庭中,可以对个人进行民意调查。使用抽样和分析准备向导可以在一个设计中指定三个阶段。
4、非随机抽样。如果随机选择难以实现,则可以系统(以固定间隔)或顺序方式抽取单元。
5、不等选择概率。如果抽取的聚类包含的单元数不相等,可以使用与大小成正比(PPS)的概率进行抽样,以使聚类的选择概率与其所含单元的比例相等。PPS抽样还可以使用更多一般加权设计来选择单元。
6、无限制抽样。无限制抽样以放回方式(WR)选择单元。因此,单个单元可能多次选入样本中。
7、抽样权重。抽样权重是在抽取复杂样本时自动计算的,与目标总体中每个抽样单元代表的“频率”十分一致。因此,根据样本的权重总和可以估计总体大小。复杂样本分析过程需要抽样权重以正确分析复杂样本。请注意:这些权重应该在“复杂样本”选项内使用,而不应通过“加权个案”过程用于其他分析过程,该过程将权重视为个案重复。
二、设计变量(分析-复杂抽样-选择样本-设计样本-设计变量)
1、分层依据。分层变量的交叉分类定义了不同的子体,即层次。分别为各层获取了不同的样本。要提高估计值的精确度,层中单元的特征应尽量均一。
2、分群。分群变量定义观察单元组,即分群。如果从总体直接抽取观察单元很昂贵,或者不可能实现,就可以使用分群;可以从总体抽取分群,然后从所选分群抽取观察单元。但是,使用分群会在抽样单元之间引入相关性,导致精度下降。要使这种影响减到最小,分群中的单元的特征应尽量均一。必须至少定义一个分群变量才能计划多阶段设计。在使用多个不同抽样方法时,分群也是必不可少的。
3、输入样本权重。如果当前样本设计是更大样本设计的一部分,则可以从更大样本设计的以前阶段获得样本权重。在当前设计的第一阶段,可以指定一个包含这些权重的数值型变量。对于当前设计的后续阶段,样本权重将自动计算。
4、阶段标签。可为每个阶段指定一个可选的字符串标签。该标签用在输出中以帮助识别分阶段信息。
三、抽样方法(分析-复杂抽样-选择样本-设计样本-方法)
1、方法。该组中的控件用于选择一种选择方法。某些抽样类型允许选择放回抽样(WR)或不放回抽样(WOR)。请注意,某些与大小成正比的概率(PPS)类型只在定义聚类之后才可用,所有PPS类型只在设计的第一阶段才可用。此外,WR方法只在设计的最后阶段才可用。
1.1、简单随机抽样。以等概率选择单元。单元可以采用放回或不放回方式进行选择
1.2、简单系统。在整个抽样框架或层次(如果指定)中,采用不放回方式以固定间隔选择单元。在第一个区间内随机选择的单元即选作起始点。
1.3、简单顺序。采用不放回方式以等概率顺序地选择单元。
1.4、PPS。这是第一阶段方法,它以与大小成正比的概率随机选择单元。任何单元都可以采用放回方式选择;只有聚类可以采用不放回方式抽样。
1.5、PPS系统。这是第一阶段方法,它以与大小成正比的概率系统地选择单元。并且单元是以不放回方式选择的。
1.6、PPS顺序。这是第一阶段方法,它以与聚类大小成正比的概率采用不放回方式顺序选择单元。
1.7、PPS Brewer。这是第一阶段方法,它以与聚类大小成正比的概率采用不放回方式从每个层次选择两个聚类。要使用此方法,必须指定聚类变量。
1.8、PPS Murthy。这是第一阶段方法,它以与聚类大小成正比的概率采用不放回方式从每个层次选择两个聚类。要使用此方法,必须指定聚类变量。
1.9、PPS Sampford。这是第一阶段方法,它以与聚类大小成正比的概率从每个层次采用不放回方式选择两个以上聚类。它是Brewer方法的扩展。要使用此方法,必须指定聚类变量。
1.10、在分析中使用WR估计。缺省情况下,估计方法是在计划文件中指定的,与所选抽样方法一致。这样,即使抽样方法意味着WOR估计,也可以使用放回方式估计。此选项只在阶段1可用。
2、大小测量(MOS)。如果选择PPS方法,则必须指定定义每个单元大小的规模度量。这些规模可以在一个变量中显式定义,也可以根据数据计算。或者,可以设置MOS的上限和下限,覆盖所有MOS变量中的值或根据数据计算的值。这些选项只在阶段1可用。
四、准备复杂样本以进行分析(分析-复杂抽样-准备分析-创建计划文件)
1、分析准备向导将引导您完成创建或修改分析计划的各个步骤,以用于各种“复杂样本”分析过程。使用该向导之前,应先根据一项复杂设计完成样本抽取。如果不能访问用于抽取样本的抽样计划文件(该抽样计划包含一个缺省分析计划),则创建一个新的计划非常有用。如果确实可以访问用于抽取样本的抽样计划文件,则可以使用抽样计划文件包含的缺省分析计划,也可以覆盖缺省分析指定项并将更改保存到新文件中。
2、估计方法:
2.1、WR(放回式抽样)。在复杂抽样设计下估计方差时,WR估计不包括对有限总体抽样的修正(FPC)。在简单随机抽样(SRS)下估计方差时,可以选择包括或排除FPC。如果分析权重已进行标度,建议选择不包括用于SRS方差估计的FPC,以免分析权重增加总体大小。SRS方差估计用于计算类似于设计效果的统计量。只能在设计的最后阶段指定WR估计;如果选择WR估计,向导将不允许添加其他阶段。
2.2、等概率WOR(等概率不放回式抽样)。等概率WOR估计包括有限总体修正,并假设单元是等概率抽取的。等概率WOR可在设计的任何阶段指定。
2.3、不等概率WOR(不等概率不放回式抽样)。除了使用有限总体修正之外,不等概率WOR还考虑以不等概率选择的抽样单元(通常为聚类)。此估计方法仅在第一阶段可用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31