数据分析—问卷调查从模型到算法
每个人心中都有一个完美的另一半,如何去找到这个自己心中最认可的另一半,在慢慢人生旅途中,我们所经历过的事情,都在影响着我们的决定,影响着我们对另一半的选择,这将是一个重大的问题,关乎着自己未来的无论是物质还是精神上的幸福。这不仅仅是一个运气的问题,还包含着巨大的人生智慧在其中,用你独具慧眼的原则和标准去判断。那么如何在长长的时间轴上判断最优秀的另一半是否出现了呢?是否其中也有哲学在其中呢?是否有量化的策略使得我们成功的几率更大呢?
2.模型始于假设:
假设1:一切皆可量化,两个人在一起取决于价值,外貌、性格、潜力甚至于感情责任等等都可以被量化,最终形成一个人的基本属性——价值,价值越高则越优秀,选择最优秀的人为伴侣;
假设2:基于时间序列,每接触一个人在经历一段时间相处之后不具有可回溯性(即不考虑惊天大逆转,突然屌丝变高帅富),再次和前任谈的时候,考虑到人总是成长的,前任以新的价值属性出现,作为挑选方,对方价值的评估以当时那个时间节点不可变(人总会成长,虽然过去的认知的价值在当前可能被贬低,但被估值的人也会成长),对于价值的评估不会失误到有近乎于极端异常值的判断,在时间轴上异性有先后顺序;
假设3:挑选是单向的,每个人都在寻找心中最高价值的TA,并且知道会遇到多少个异性
模型的量化好坏取决于算法的优劣、假设的合理性,基于以上假设,去推导其中算法:
现在我们的男主,在时间轴上他会遇到N个我们的女主,男主要挑到最优秀的真命女主,假定处于第i个女主是真命女主,为了遇到这个这个真命女主,男主需要去接触k次女主,作为对女主价值的认知,以便进行判断对真命女主的价值的benchmark认知:
第一步:第i个女主是真命女主,那么概率是1/N。
第二步:benchmark的意义在与,前i个女主中,比第i个真命女主价值小的次最大价值女主出现在试探性的1到k个女主中,概率为k/(i-1),这个次最大价值女主为什么不是全域上的最大女主,因为我们遇到了第i个时,第i个女主是假定的最大价值女主,我们不需要i+1到N去挑了。同样的道理,一旦男主接触试探了k个女主,次最大价值女主在1到k时,那么k到i-1女主自然是不用再看了,第一个比1到k中出现的次最大女主价值大的就是真命女主。
那么男主试探k个女主找到真命的概率就是:
3.结论分析
综上可得,目标函数可用。对目标函数求导,发现x=1/e时,一阶导数为0,x<1/e时导数为正,x>1/e时则为负,故而目标函数收敛于x=1/e。代入x=1/e,得到
也就是说,当x=1/e的时候,在我们的男主试探(认识了N*个女主)有最大的概率即约为37%的概率遇到我们的真命女主——那个我们男主最想要的的女主。从理论模型我们回到现实,也即是说当我们的男主在时间序列上遇到了100个女主(N=100),那么我们的男主要认识37次女主(k=37,),以进行判断真命女主,在37次接触中,只要碰到从第37个开始,比前36个价值最高的女主还高,那么该女主就以最大可能性成为我们的最高价值女主。那么这就是你最认可的另一半了。
实际生活中,我们打交道的女生其实远没有那么多,所以当我们认识几个女生以后就开始“收敛”了,从心里我们就认定彼此了。上述算法的结论一般性意义在与:
1.假如你对未来伴侣特别挑剔,那你起码应该适量的多认识几个,尤其是对于那些身边异形很多的朋友,想要遇到自己中意的,可能就需要更多才能有一个比较理性的判断;
2.从“收敛”性看出,不是认识的异形越多越多就会遇到更优秀的人,往往越到最后就会成空。成为一个人的初恋意味着成为别人的“收敛”节点可能性更大,假如你还可以重新加入TA的挑选队列,反言之初恋往往没有好下场也是同样的道理,人是会变的,价值观自然也会变;
3.因为资源有限,好的总是出手或者被出手快,导致身边的异性偏少,越优秀的会越快“收敛”;反言之越优秀可能最后就剩了下来,这是两个极端情况,实际生活中并不少见,晚点结婚对于现代更开放的年轻人来说也是有优势的,处于中间则是最惨的——所以这大约也是被逼婚的重要原因。
更多的结论在实际调查中是有待调研得出的......
我们要做的是能以最大化的几率遇到最优秀的人,以最高的效率遇到你最中意的人,然后就放手去追TA吧!当然,也要去认识到模型的短板,毕竟找到另一半是一个涉及方方面面,是个极为复杂的问题。假设1缺陷在与量化的困难,一个人的价值不是裸露在外面就可以看到的,不然也不会有这么多遇人不淑;假设3的缺陷在与如何去确认N值的大小,虽然一个时期内经过一定时间的沉淀,身边的异性是差不多固定的......这些都不用去管,重要的是模型通过了,只需要添加一些问题:你身边的异性朋友有多少?你的性格是外向、一般、宅男?等等这些问题,只要人们对美的向往心无限,那么我的模型和算法就有可取之处。
从上述模型和算法,我们要知道,做数据分析和数据挖掘必须有着对数据的敏感性,假如过去曾经发生的事对于未来没有任何影响的话,那么TA一定是失败的,我觉得对于任何其他职业也是一样。在真正的数据挖掘和分析师看来,将来的事从来都不是随机,发生过的事情进过一定的“惩罚机制”去放大效果,对于将来的影响是巨大的。一定几率的事可以代表着将近绝对的概率发生,这并不是一句矛盾的话。这正是机器学习的核心所在,细小的变动,于细枝末节处慢慢的体现出对最终结果的影响,发生过的数据一点点的推进学习的步伐,最后就能学习到一定规律的东西。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31