SPSS最优尺度:非线性典型相关性分析
一、非线性典型相关性分析(分析-降维-最优尺度)
1、概念:非线性典型相关性分析对应于使用最优尺度的分类典型相关性分析。此过程的目的是确定分类变量集相互之间的相似程度。非线性典型相关性分析也用缩写词OVERALS来表示。标准典型相关性分析是多重回归的扩展,其中第二个集不包含单响应变量,而是包含多响应变量。其目标是尽可能解释低维空间中两个数值变量集之间的关系中的方差。最初,每个集内的变量进行线性组合以使线性组合有最大的相关性。有了这些组合,就可以确定后续线形组合与前面的组合无关,并可确定其具有可能的最大相关性。
最优尺度方法在三个重要方面扩展了标准分析。首先,OVERALS允许两个以上的变量集。其次,变量或者可调整为名义、有序,或者调整为数值。因此,可以分析变量间的非线性关系。最后,变量集与一个由对象得分定义的未知折中集进行比较,而不是使变量集之间的相关性最大化。
2、示例。使用最优尺度的分类典型相关性分析可用于以图形方式显示包含工作类别和教育年限的一个变量集与包含居住地区和性别的另一个变量集之间的关系。您可能会发现教育年限与居住地区的区别程度比其余变量高。您还可能发现教育年限在第一维上区别最大。
3、统计量和图。频率、质心、迭代历史记录、对象得分、类别量化、权重、成份载入、单拟合和多拟合、对象得分图、类别坐标图、成份载荷图、类别质心图、转换图。
4、数据。使用整数来编码分类变量(名义或有序尺度级别)。要最小化输出,请使用从1开始的连续整数来编码每个变量。调整为数值级别的变量不应重新编码为连续整数。要最小化输出,对于调整为数值级别的每个变量,从每个值中减去最小观察值然后加上1。小数表示的值则截去小数部分。
5、假设。变量可分成两个或更多变量集。分析中的变量调整为多名义、单名义、有序或数值。过程中使用的最大维数取决于变量的最佳度量水平。如果所有变量都指定为有序、单名义或数值,则最大维数是以下两个值中的较小者:观察次数减1或变量的总数。但是,如果只定义了两个变量集,则最大维数为较小集中的变量数。如果某些变量为多名义,则最大维数为多名义类别的总数加上非多名义变量的数目减去多名义变量的数目。例如,如果分析涉及五个变量,其中一个变量是带有四种类别的多名义变量,则最大维数为(4 + 4–1),即7。如果指定了大于最大值的数,则会使用最大值。
6、相关过程。如果每个集只包含一个变量,则非线性典型相关性分析等效于使用最优尺度的主成分分析。如果所有这些变量都是多名义,则分析对应于多重对应分析。如果涉及两个变量集,并且其中一个仅包含一个变量,则分析等同于使用最优尺度的分类回归。
二、选项(分析-降维-最优尺度-非线性典型相关-选项)
1、显示。可用统计量包括边际频率(计数)、质心、迭代历史记录、权重和成份载入、类别量化、对象得分以及单拟合和多拟合统计量。
1.1、质心.类别量化,对象得分的投影平均值和实际平均值,其中的对象(个案)包含在属于相同变量类别的那些对象的每个集合中。
1.2、权重和成分载入.集合中每个已量化的变量的每个维度的回归系数(其中,在已量化的变量上对对象得分进行回归)以及已量化的变量在对象空间中的投影。它指示每个变量对每个集合中的维度的贡献。
1.3、单拟合和多拟合.对于对象,是对单和多类别坐标/类别量化的拟合优度的测量。
1.4、类别量化.分配给变量类别的最优刻度值。
1.5、对象得分.分配给特定维度中某个对象(个案)的最优得分。
2、图。可生成类别坐标图、对象得分图、成份载荷图、类别质心图以及转换图。
3、保存对象得分。可将对象得分保存为活动数据集中的新变量。对象得分针对在主对框中指定的维数保存。
4、使用随机初始配置。如果部分或全部变量为单名义,则应使用随机初始配置。如果未选择此选项,则使用嵌套初始配置。
5、标准。可以指定非线性典型相关性分析可在其计算中执行的最大迭代次数。还可以选择收敛标准值。如果上两次迭代之间的总拟合之差小于收敛值,或者达到了最大迭代次数,则分析停止迭代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31